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Introduction

first published in 1929, the
least cited among his works

• obscured by Meyerson and
emergence of quantum
mechanics

• Bachelard moved on and
disowned it

renewed attention after a
2014 reprinting

• Bachelard scholarship
(Fruteau De Laclos,
Parrochia, Alunni)

• relativity scholarship
(Hentschel, Friedman,
Ryckman, etc.)
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Introduction

Reichenbach (1928) =⇒ general relativity in context of justification

• from Helmholtz to Poincaré: choice among different geometries

Bachelard (1929) =⇒ general relativity in context of discovery

• from Riemann to tensor calculus: same geometry in different coordinate
systems
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Introduction

General relativity requires that fundamental laws be expressed as tensor
equations:

comma-goes-to-semicolon rule: ordinary derivatives (commas)
=⇒ covariant derivatives (semicolons).

equivalence principle: special-relativistic non-gravitational laws
=⇒ general-relativistic gravitational laws

F µν

,

{

→ ordinary derivative

ν
= −4π

c
jµ

{non-gravitational law←

=⇒ F µν

;
{

→ covariant derivative

ν
= −4π

c
Jµ

{ → gravitational law

“ tensor calculus knows physics better than the physicist does

Langevin (quot. by Bachelard)”
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Introduction

In 1929, when Bachelard’s book was published, the Vienna Circle
manifesto advocated for “neatness and clarity” in German-speaking
philosophy of science (Hahn, Neurath, and Carnap 1929, 15).

Bachelard’s work as example of the growing fascination of
French-speaking philosophy of science with the “dark distances and
unfathomable depths” that the Viennese rejected (Hahn, Neurath,
and Carnap 1929, 15).

appreciate the ‘depth’ of Bachelard’s result by presenting it
with some of the ‘clarity’ that the logical empiricists aspired to
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Part I

The Early Reception of Relativity in France
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The Early Reception of Relativity in France

April 6, 1922: Einstein at the Société française de philosophie.

philosophers:

• Bergson, Durée et simultanéité (1922)
• Brunschvicg, L’expérience humaine et la causalité physique (1922)

physicists:

• Becquerel, Le principe de relativité et la théorie de la gravitation (1922)
• Metz, La relativité (1923)

Meyerson, La déduction relativiste (1925)

5 / 23



5 / 23



The Early Reception of Relativity in France

Meyerson: relativity as a static deductive system of existing laws;

Bachelard: relativity as “a method of progressive discovery” of
new laws (Bachelard 1929, 6).

inductive=heuristic
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The Early Reception of Relativity in France

general relativity by demanding that empirically well-established laws
satisfy some abstract mathematical requirements, “finally drags
the experience out of its initial domain of examination” (Bachelard
1929, 11).

in general relativity putting a non-gravitational law in tensor form is
sufficient to obtain a gravitational law, that is new physical result

mathematical induction
non-gravitational law =⇒ substitute ordinary

with covariant derivatives =⇒ gravitational law
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The Early Reception of Relativity in France

“ First of all, tensor calculus, which plays a primordial role in relativ-
ity, systematically pursues the maximum possible richness of vari-
ables. Through the interplay of its multiple indices, it is ready to
face all instances of variation. On the other hand, the various ten-
sorial indices fold and unfold at will in an alternating movement of
generalization and application. [. . .] [T]hrough its condensed for-
mulas, tensor calculus manages to inscribe generality under the
persuasive sign of the particular. [. . .] Then, thanks to the simple
movement of a coordinate transformation, it will be noticed that
the experimental matter begins to flow into these formal molds.

(Bachelard 1929, 63)”
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Part II

The Mathematical Meaning of the Notion of
Covariant Derivative
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The Mathematical Meaning of the Notion of Covariant Derivative

A′
σ

∂φ

∂x′
ν

= ∂xµ

∂x′
ν{

→ transformation coefficient

∂φ

∂xµ

{

derivative of a scalar φ←

Aν

{

covariant vector (1-tensor)←

,

∂A′
µ

∂x′
ν

= ∂

∂x′
ν

(
∂xσ

∂x′
µ

Aσ

)
= ∂xσ

∂x′
µ

∂xτ

∂x′
ν

∂Aσ

∂xτ{
tensorial term←

+ ∂2xσ

∂x′
µ∂x′

ν
Aσ{

→ non-tensorial term

.
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The Mathematical Meaning of the Notion of Covariant Derivative

{
µν

τ

}
{

→ Christoffel symbols

= 1
2gλα

(∂gµα

{

metric tensor = gµν←

∂xν
+ ∂gνα

∂xµ
− ∂gµν

∂xα

)
.

{
µν

ρ

}′
∂xϵ

∂x′
ρ

= ∂2xϵ

∂x′
µ∂x′

ν{
→ non-tensorial term

+ ∂xα

∂x′
µ

∂xβ

∂x′
ν

{
αβ

ϵ

}
.
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The Mathematical Meaning of the Notion of Covariant Derivative

d2xϵ

∂x′
µ∂x′

ν
=

{
µν

ρ

}′
∂xϵ

∂x′
ρ
− ∂xα

∂x′
µ

∂xα

∂x′
ν

{
αβ

ϵ

}

∂A′
µ

∂x′
ν
−

{
µν

ρ

}′

Aσ
∂xσ

∂x′
ρ

{

→ = A′
ρ

= ∂xσ

∂x′
µ

∂xτ

∂x′
ν

∂Aσ

∂xτ
+ d2xϵ

∂x′
µ∂x′

ν
− ∂xα

∂x′
µ

∂xβ

∂x′
ν

{
αβ

σ

}
Aσ

= ∂xσ

∂x′
µ

∂xτ

∂x′
ν

(
∂Aσ

∂xτ
−

{
ρσ

τ

}
Aσ

){
→ covariant 2-tensor

,
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The Mathematical Meaning of the Notion of Covariant Derivative

Aµν

{

covariant 2-tensor←

=

absolute change︷ ︸︸ ︷
∂Aµ

∂xν{
apparent change←

−

{
µν

ρ

}
Aρ{

→ pseudo-variation

.
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The Mathematical Meaning of the Notion of Covariant Derivative

“ It is known that the notion of the tensor derivative became estab-
lished when there was a desire to find an expression that possessed
the characteristics of a tensor and could replace, in all its roles, the
ordinary derivative. It was recognized that the simple derivative of
a vector does not maintain its form in any change of coordinates; in
other words, it seemed that the ordinary derivative of a vector did
not have the tensorial character. To align with the general spirit of
tensor methods, it was necessary to add to the ordinary derivative
terms capable of automatically compensating for the changes that
this derivative underwent in a transformation of axes. This was eas-
ily achieved by adding linear functions of the Christoffel symbols

(Bachelard 1929, 66 sq.)”
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The Mathematical Meaning of the Notion of Covariant Derivative

The addition of ‘ghost’ non-tensorial quantities,

{
µν

τ

}
, ensures the

tensorial nature of the operation of tensor differentiation:{
µν

τ

}
= 0 by a suitable choice of coordinates

• “the covariant derivatives of tensors reduce to the ordinary derivatives”
(Bachelard 1929, 66 sq.){

µν

τ

}
̸= 0 by any choice of coordinates

• the covariant derivatives of tensors do not reduce to the ordinary
derivatives
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The Mathematical Meaning of the Notion of Covariant Derivative

Rρ
µνσ

{

→ Riemann-Christoffel Tensor

=

{
µσ

ϵ

}{
ϵν

ρ

}
−

{
µν

ϵ

}{
ϵσ

ρ

}{ → terms depending on the first derivatives of the gµν

+ ∂

∂xν

{
µσ

ρ

}
− ∂

∂xσ

{
µν

ρ

}{
terms depending on second derivatives of the gµν←

,

Rρ
µνσ = 0: the non-vanishing of the Christoffel symbols due to an

arbitrary choice of coordinates =⇒ Euclidean

Rρ
µνσ ̸= 0: the non-vanishing of the Christoffel symbols are not due to

an arbitrary choice of coordinates =⇒ non-Euclidean
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Part III

The Physical Meaning of the Notion of
Covariant Derivative
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The Physical Meaning of the Notion of Covariant Derivative

Inductive value of the procedure “that allows us to replace, in certain
cases, the ordinary derivative with the tensor derivative” (Bachelard
1929, 65).

express non-gravitational physical law in orthogonal coordinates in
terms of ordinary derivatives in the Euclidean case Rρ

µνσ = 0
replace ordinary derivatives with covariant derivatives in the Euclidean
case Rρ

µνσ = 0.

postulate that the law in tensor applies in a non-Euclidean case
Rρ

µνσ ̸= 0

non-gravitational laws =⇒ gravitational laws
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The Physical Meaning of the Notion of Covariant Derivative

“ How can we not see that these few lines contain the essence of an
extremely new method, which bases all its justification on a gen-
eralizing relation, and all its movement on an inductive impulse!
There are three moments in this method:

1. Purely formal additions that contribute absolutely nothing in
terms of quantity;

2. An algebraic game [jeu algébrique] that allows one to move
from a particular case to the general case;

3. Then, once generality is conquered, a statement that
invariance does not apply to a world of ghosts, but that
almost always, thanks to the consistency and permanence of
its form, this invariance implies a matter. Moreover, in
Einstein’s principle of equivalence, one find assurance for this
adventurous induction which claims, through a form, to
conquer a matter.

(Bachelard 1929, 66 sq.)”
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The Physical Meaning of the Notion of Covariant Derivative

x1 = x, x2 = y, x3 = z, x4 = ct ,

□

{

d’Alembert operator←

φ

{

→ potential

= −∂2φ

∂x2
1
− ∂2φ

∂x2
2
− ∂2φ

∂x2
3

+ ∂2φ

∂x2
4

= 0 ,

{ → wave equation

g11 = g22 = g33 = −1; g44 = +1 ;{
→ orthogonal coordinates

{
µν

τ

}
= 0; Rρ

µνσ = 0 .
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The Physical Meaning of the Notion of Covariant Derivative

gµνφµν

{

covariant 2-tensor←

≡ gµν

(
∂2φ

∂xµ∂xν{
not a tensor←

−

{
µν

α

}
∂φ

∂xα{
→ not a tensor

)
= 0 .
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The Physical Meaning of the Notion of Covariant Derivative

□φ = 0 =⇒ gµνφµν = 0 ,

wave equation in all coordinate system
+ wave equation in a gravitational field
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The Physical Meaning of the Notion of Covariant Derivative

“ We have thus found the differential equation, correct and complete,
capable of determining the law of the propagation of the potential
φ in the case where this propagation occurs through a gravitational
field. In this way, algebra has been induced to cooperate with real-
ity, with its own impulse towards calculation, without ever assum-
ing and seeking instruction from reality as primary. To summarize,
let’s take an overall look at the stages of the construction. The
problem was approached through its formal characteristics. Then
the tensorial character, which was truly mutilated by the degen-
eration of certain variations, was sought. Once highlighted, this
tensorial element, by itself, restored the law in its entirety. An in-
variant character then presented itself, allowing the transition from
the particular case to the general case. Finally, the assertion of the
principle of equivalence regulated the osculation of reality through
the laboriously and progressively constructed general framework

”
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The Physical Meaning of the Notion of Covariant Derivative

1. equation expressing a non-gravitational law in which only ordinary

derivatives appear: gµν = const.,

{
µν

τ

}
= 0, Rρ

µνσ = 0;

2. equation in tensor form by substituting ordinary derivatives with

covariant derivatives: gµν ̸= const.,

{
µν

τ

}
̸= 0, Rρ

µνσ = 0;

3. equation expressing a gravitational law: gµν ̸= const.

{
µν

τ

}
̸= 0,

Rρ
µνσ ̸= 0;

equivalence principle: the gravitational

laws depend only on

{
µν

τ

}
, but not on Rρ

µνσ
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Comma-Goes-to-Semicolon

F µν

,
{

→ ordinary derivative

ν
= −4π

c
jµ

{non-gravitational law←

=⇒ F µν

;

{

→ covariant derivative

ν
= −4π

c
Jµ

{ → gravitational law

F µν
,;ν = ∂νF µν + Γµ

νρ{
affine connection=Christoffel symbols←

F νρ
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Part IV

Conclusion
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Conclusion

Einstein’s 1928 Review of Meyerson’s Book

Meyerson = deduction

Bachelard = induction

“ Il y a quelques années,
M. Langevin nous disait:
“Le Calcul Tensoriel sait
mieux la physique que le
Physicien lui-même”

(Bachelard 1934, 54)”
“ Tensor calculus, Paul

Langevin liked to say,
knows relativity better
than the relativist himself.

(Bachelard 1949, 578)”
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Conclusion

“ one obtains tensors again through differentiation of tensors with
respect to the coordinates in an inertial system* and that e.g. the
wave equation represents an objective expression in inertial sys-
tem. The [affine connection Γl

ik]s now allows such tensor forma-
tion by differentiation in relation to an arbitrary coordinate sys-
tem†. Therefore it is the invariant substitute of inertial systems and
thereby—as it appears—the foundation of every relativistic field
theory.

Einstein to Besso, 10-08-1954”
*ordinary derivative.
†covariant derivative.
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Thanks!

Marco Giovanelli

Università degli Studi di Torino
Dipartimento di Filosofia e Scienze
dell’Educazione

marco.giovanelli@unito.it
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