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Gaston Bachelard’s 1929 La valeur inductive de la relativité is arguably his most overlooked work.
This paper argues that, nevertheless, it represents a noteworthy contribution to the early history of
the philosophical interpretation of general relativity. In particular, Bachelard deserves recognition
for identifying the central importance of the comma-goes-to-semicolon rule, referenced in modern
textbooks: The principle of general relativity demands that fundamental laws of nature be expressed by
tensor equations, substituting ordinary derivatives (commas) with covariant derivatives (semicolons).
The equivalence principle might be taken as the claim that this formal change in non-gravitational
laws directly leads to the discovery of gravitational laws. The paper concludes that, among early
professional philosophers working on relativity, Bachelard uniquely grasped the “inductive value” of
this heuristic device: “tensor calculus knows physics better than the physicist does”, as Langevin once
put it.

Introduction

Gaston Bachelard’s 1929 La valeur inductive de la relativité remains to this day the
least cited and discussed among his works, and it is barely known outside Bachelard
scholarship (Alunni 1999, 2019). As its title not so subtly insinuates, the booklet was
written to counter Émile Meyerson’s 1925 La déduction relativiste (Meyerson 1925;
see Parrochia 2003; Chazal 2012). However, it was published only a few months after
Einstein’s (1928) glowing review of the latter appeared in the Revue philosophique
(Giovanelli 2018). Einstein’s apparent endorsement of Meyerson’s ‘deductivist’ reading
of relativity likely contributed to diminishing the prospects of Bachelard’s alternative
‘inductivist’ interpretation. The shift in the philosophical debate towards new quantum
mechanics probably did the rest: La valeur inductive received only a few reviews and
soon fell into oblivion. Bachelard himself hardly mentioned relativity in the following
years (Fruteau de Laclos 2005). Reportedly, Bachelard’s daughter Suzanne and Georges
Canguilhem, Bachelard’s successor at the Sorbonne, vetoed its reissue, arguing that
Bachelard himself would have disowned it (Parrocchia 2014, 7-8; fn. 1).

In spite of these ‘prohibitions,’ a reprinting of La valeur inductive was published
by Vrin in 2014. At a time of renewed interest in the history of French ‘epistemology’
(Brenner and Gayon 2009; Bitbol and Gayon 2015), the reedition did not fail to
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provoke reactions among Bachelard’s scholars. In particular, Daniel Parrocchia (2014)’s
illuminating ‘Preface’ has reopened the question of whether Bachelard’s ‘silence’ on
relativity starting from the mid-thirties (Fruteau de Laclos 2005) is a symptom of a
change in his philosophy or merely the consequence of the declining interest in relativity1

after the mid-1920s (Alunni 2019). However, the reedition of the booklet does not
seem to have attracted much attention outside the circle of French Bachelard scholars
(Abramo 2019). Indeed, although there has been a flourishing of historical work on the
early philosophical reception of relativity, Bachelard’s book is rarely mentioned in this
literature.2

The lack of popularity of La valeur inductive is, after all, not surprising. Bachelard’s
arguments are expressed in convoluted language that might be dismissed as unnecessarily
abstruse even by philosophically minded physicists. At the same time, reading the book
presupposes some familiarity with the mathematical apparatus of general relativity,
which might be quite demanding even for scientifically minded philosophers. This is
a pity, since, as this article aims to show, Bachelard made a valuable contribution to
the early history of the philosophical reception of general relativity that has remained
largely unnoticed.

In the early philosophical literature on relativity theory, from Moritz Schlick (1917)
to Hans Reichenbach (1928), it was common to project the theory against the back-
ground of the 19th-century debate about the foundations of geometry, from Helmholtz
(1868) to Poincaré (1891). As a consequence, general relativity theory was often
presented as a case of ‘mathematical underdetermination’: experience does not pro-
vide enough mathematical structure, so the choice among different (Euclidean and
non-Euclidean) geometries is seen as arbitrary or conventional. In contrast, Bachelard
recognized that general relativity emerged from a different tradition that, from Rie-
mann’s (1854–68) inaugural lecture, led to Levi-Civita and Ricci-Curbastro’s (1900)
absolute differential calculus—the ‘tensor calculus’ in modern terms. Thus, he perceived
general relativity as a case of ‘mathematical overdetermination’: the theory exploits the
fact that tensor calculus allows for the presentation of the same geometry in different,
arbitrary coordinate systems.

Bachelard was the first and possibly the only philosopher to notice that it is
by exploiting this ‘redundancy’ in the description of the real that general relativity,
quite paradoxically, claims to uncover a property of the real itself.3 The originality of
Bachelard’s perspective is a consequence of his distinct approach to the philosophy
of physics. Most early philosophical debate considered general relativity within the
‘context of justification,’ addressing the question of how its abstract mathematical
apparatus is connected to empirical reality. In contrast, Bachelard placed the theory in
the ‘context of discovery,’ aiming to understand the role played by the mathematical
apparatus in uncovering new physical content.4 It is for this reason that Bachelard
understood quite clearly the central role played by the procedure that modern textbooks
call the comma-goes-to-semicolon rule (Misner, Thorne, and Wheeler 1973, 387–392).
The principle of general relativity demands that all fundamental laws of nature be

1See Eisenstaedt 1986.
2Hentschel (1990), which remains the most comprehensive source on the topic, mentions Bachelard

only briefly (71). Ryckman 2005, sets the cut-off at 1925. However, Ryckman’s (2024) SEP entry on
the early interpretation of general relativity also does not mention Bachelard.

3Sciama (1964) labeled this procedure the ‘gauge trick’.
4Cassirer (1921) also insists on the ‘heuristic value’ of both relativity principles. However, Bachelard

does not seem to be familiar with Cassirer’s work.
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specified by tensor equations; in practice, this requires substituting ordinary derivatives
(‘commas’ in modern notation) with covariant derivatives (‘semicolons’).5 The claim that
this mere mathematical step leads to a physical result might be taken as a formulation
of the ‘equivalence principle’6: a trivial alteration in the mathematical formulation
of special-relativistic non-gravitational laws leads to the non-trivial discovery of the
corresponding gravitational laws that, at least in principle, can be tested empirically.
As Bachelard loved to put it, quoting Paul Langevin: “tensor calculus knows physics
better than the physicist does” (Bachelard 1934, 54; 1949, 578).

Bachelard should be credited for having at least attempted to provide a first
‘philosophical’ appreciation of tensor calculus,7 by emphasizing the ‘inductive value’ of
the ‘trick’ of replacing ordinary with covariant derivatives. Unfortunately, Bachelard’s
result remained obscured by the dense prose that characterizes La valeur inductive. In
1929, when Bachelard’s book was published, the Vienna Circle manifesto advocated
for “neatness and clarity” in German-speaking philosophy of science (Hahn, Neurath,
and Carnap 1929, 15). One might say that Bachelard’s work offers an example of the
growing fascination of French-speaking philosophy of science with the “dark distances
and unfathomable depths” that the Viennese rejected (15). The main objective of this
paper is to appreciate the ‘depth’ of Bachelard’s result by presenting it with some
of the ‘clarity’ that the logical empiricists aspired to. To this purpose, after briefly
placing Bachelard’s book in its historical context (section 1), the paper analyzes in
some detail the central example of ‘relativistic induction’ provided by Bachelard in the
second chapter of the book: it presents the mathematical notion of covariant derivative
(section 2) and its physical application (section 3).

Bachelard was confident that it was possible to appreciate the role of tensor calculus
in relativity “without the need to understand the meaning of the symbols” (Bachelard
1929, 77). However, the poor reception of the book might suggest that he was too
optimistic. This paper is based on the conviction that, in order to properly appreciate
Bachelard’s argument, it is indeed advantageous to become somewhat familiar with the
formalism to which Bachelard alludes, without presenting it. Bachelard’s knowledge
of the mathematical apparatus of relativity is mostly based on Jean Becquerel’s 1922
relativity textbook, the first authored by a French physicist (Becquerel 1922a, see
also). In turn, the latter heavily draws on Arthur S. Eddington’s Espace, Temps et
Gravitation (Eddington 1921), the French translation of his celebrated popular book
(Eddington 1920b), which was supplemented by a second detailed technical part.

A historical understanding of Bachelard’s sources is important for appreciating
Bachelard’s philosophical point. In particular, I argue that Eddington’s distinction
between an ‘artificial’ and ‘permanent’ gravitational field, through book, percolated
into Bachelard’s work, forming the backbone of his argument. Bachelard recognized
that the “inductive audacity” of the theory (Bachelard 1929, 74) resides in the following
requirement: All laws describing phenomena in an ‘artificial’ gravitational field that
can be removed by the choice of coordinates will also hold in a permanent gravitational
field (Eddington 1920a, 43). This requirement, which might be taken as a formulation

5The ordinary derivative of a contravariant vector is often indicated by Aµ
,ν = ∂µAν , the covariant

derivative by Aµ
;ν = ∇µAν . See below, fn. 20, for an example. In the following, the notation used at

Bachelard’s time is adopted.
6The formulation of the equivalence principle remains controversial (see Lehmkuhl 2022).
7It is indeed surprising that even Reichenbach (1928) barely addresses the meaning of tensor

calculus for general relativity.
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of the equivalence principle, cannot be ‘deductively’ proved; its justification resides in
the fact that it is ‘inductively’ powerful in delivering new gravitational laws.

1 Bachelard and the Early Reception of Relativity in France

One could argue that the history of the philosophical reception of relativity in France
has a precise start date: April 6, 1922, the day of the legendary session organized
by the Société française de philosophie at the Sorbonne on the occasion of Einstein’s
visit to Paris (Einstein et al. 1922). Among the participants were leading French
mathematicians, such as Élie Cartan; physicists, like Langevin and Becquerel; and
philosophers, like Henri Bergson, Léon Brunschvicg, and Émile Meyerson. A few months
after Einstein’s visit, in the spring, the publisher Alcan released Durée et simultanéité
by Bergson (1922), and in the summer, L’expérience humaine et la causalité physique by
Brunschvicg (1922), which also includes an analysis of both relativity theories (401–432).
In the same year, Becquerel8 published two books on relativity: a popular book that
provides a general exposition intended for a non-specialist audience (Becquerel 1922a)
and a more technical book, dedicated to Langevin—one of the early supporters of
the theory of relativity in France (Becquerel 1922b)—, which compiles Becquerel’s
1921–1922 Paris lectures (Imperiali 2024, chap. IV).

Becquerel sought not only to spread the “new ideas” but also to defend them
against misconceptions and criticisms (Becquerel 1922a, 9). In 1923, after releasing a
scathing review of Bergson’s book (Becquerel 1923), Becquerel wrote the ‘Preface’ to La
relativité by André Metz (1923), which undertook a systematic ‘debunking’ of French
vulgarizations and supposed refutations of the theory (Einstein to Metz, Dec. 25, 1923;
CPAE, Vol. 14, Abs. 234). The theory of relativity is a physical theory that explains
‘real phenomena’ and has nothing to do with ‘philosophical relativity’ —a point that
both Bergson (Metz 1924, 81) and Brunschvicg misunderstood (Metz 1926, 71). It
was Meyerson who was able to articulate this view more broadly in a monograph that
was sent to the publisher in March 1924. Meyerson’s La déduction relativiste appeared
the following year and sparked considerable debate (Lalange 1925; Brunschvicg 1926;
Metz 1927). After a few months of epistolary back and forth, Einstein (1927) himself
completed a long review of Meyerson’s book, promoting it as a realistic-rationalistic
antidote to the widespread phenomenistic-positivistic interpretation of the theory.
This review, translated by Metz, was ready for publication in early December 1927
(Giovanelli 2018).

At that time, the 43-year-old Bachelard was still a high school teacher of physics
and chemistry in his hometown, Bar-sur-Aube (Chimisso 2001, 1; Smith 2016, 5). At
the end of November, he contacted Meyerson to introduce himself and inform him of
the shipment, by the Parisian publisher Vrin, of two of his early philosophical writings
(Bachelard to Meyerson, Nov. 30, 1927; EMLF, 32): his doctoral thesis supervised by
Brunschvicg (Bachelard 1928a) along with the complementary dissertation (Bachelard
1928b). Bachelard visited Meyerson in Paris in the spring of 1928 (Bachelard to
Meyerson, Apr. 18, 1929; EMLF, 32), around the time Einstein’s (1928) review appeared
in the Revue philosophique. Bachelard aimed to discuss his plans to work on relativity.

Indeed, a few months later, he sent a copy of La valeur inductive to Meyerson,
emphasizing that it was only “the outline of a thought that I would like to develop in a
more extensive work” (Bachelard to Meyerson, Dec. 18, 1927; EMLF, 32f.). Bachelard’s

8Son of Nobel Prize-winning physicist Henri Becquerel.
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choice to consult Meyerson is understandable, given that Meyerson had become the
leading French philosopher in the field. However, Bachelard’s book was written with
an unmistakable anti-Meyersonian bent, which was conspicuously signaled by the title
itself. Indeed, Bachelard’s use of the term ‘inductive value’ is somewhat idiomatic and
serves as a counterpoint to Meyerson’s insistence on the ‘deductive value’ of the theory.
I think that the expression ‘heuristic value’9 would have been less catchy but probably
more appropriate to convey the central idea of the book.

According to Bachelard, relativity is not, as Meyerson suggested, a static deductive
system of available laws; on the contrary, it is “a method of progressive discovery” of
new laws (Bachelard 1929, 6). In particular, in the second chapter, Bachelard analyzes
some examples that should introduce the reader to the “very heart of mathematical
induction” that characterizes relativistic physics (10). Relativity (both in its special
and general variants), by demanding that empirically well-established laws satisfy
some abstract mathematical requirements, “finally drags the experience out of its
initial domain of examination” (11). Here lies the distinctive character of the theory.
Newtonian theory was ultimately an attempt at an explanation of the laws of nature
according to a “deductive ideal” modeled on Euclidean geometry (51). On the contrary,
according to Bachelard, Einstein’s theory is a method of discovery of the laws of nature
based on an ‘inductive ideal’ represented by thermodynamics (140f.).10 According to
Bachelard, this “richness of inference” (51) is not simply an occasional byproduct of
the theory. On the contrary, it is its true driving force: “the inferential value is one of
the deepest, and also one of the most curious, characteristics of Einsteinian thought”
(52).

While Bachelard occasionally refers to special relativity, his main focus is general
relativity. The latter is based on the requirement that the special relativistic laws of
nature, valid only for a particular class of coordinate systems, should be put in ‘tensor
form’ valid in all coordinate systems. At first glance, this might seem like a rather trivial
change in their mathematical formulation11; however, combined with the equivalence
principle, this change is nontrivial in its implications. It incorporates gravity into
all the laws of physics, leading to the discovery of new testable gravitational laws
starting from empirically confirmed non-gravitational laws. In this sense, Bachelard
emphasizes that “[i]nduction, more here than elsewhere, is the very movement of the
system; it is invention elevated to the status of a method” (51). Relativity arrives at
reality indirectly by putting the laws of nature in their most general form; that is, to a
certain extent, it “proves reality by generality” (52). This strategy can be framed as
an inductive recipe that, for Bachelard, has profound philosophical importance: “what
can be generalized, must be generalized; it is precisely this that will complete our
knowledge of reality” (52).

The history of science presents many other cases of “mathematical generalizations”
(55). Bachelard concedes that, at first glance, this fact “might serve as an argument
for a deductive thesis” à la Meyerson (63). However, upon closer inspection, most of
these cases should be regarded as “instances of induction” (63). For Bachelard, general
relativity provides a prime example of this peculiar form of “mathematical induction”

9An expression that Einstein uses on several occasions, e.g., Einstein 1917, 28f.; 67.
10For the comparison with thermodynamics, Bachelard refers to Campbell 1924. Bachelard seems

to be unaware that Einstein (1919) himself suggested this comparison.
11Bachelard seems to be unaware of Kretschmann’s (1917) triviality-objection.
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(51).12 Relativity shows that expressing equations of various kinds in their most general
mathematical tensor form, which holds in any coordinate system, directly leads to the
discovery of new physical content:

First of all, tensor calculus, which plays a primordial role in relativity, systematically
pursues the maximum possible richness of variables. Through the interplay of its multiple
indices, it is ready to face all instances of variation. On the other hand, the various
tensorial indices fold and unfold at will in an alternating movement of generalization and
application. The general always remains present, always as clear as the example. In other
words, through its condensed formulas, tensor calculus manages to inscribe generality
under the persuasive sign of the particular. Therefore, tensor calculus seems to us, in its
essence, particularly suited to providing the framework for generalization. By giving it
one of the variables of the problem, it will be able to associate all the others with it;
it will prepare them as empty forms, as possibilities awakened by a sort of instinct for
functional symmetry, by a genius of generality. Then, thanks to the simple movement of
a coordinate transformation, it will be noticed that the experimental matter begins to
flow into these formal molds, bringing life to these ghosts, balancing all variations, and
finally elucidating the role of the general. (Bachelard 1929, 63)

Bachelard seems to be fascinated precisely by that ‘debauch of the indices’ (débauches
d’indices) about which Cartan (1928, V) complained around the same time. Tensor
calculus, through the skillful manipulation of index notation, allows one to generalize
the mathematical expression of a law, which is valid in the special case of rectangular
coordinates, to a form that is valid in all possible coordinate systems: “It is possible
to grasp this surprising process of generalization at the very root of tensor calculus”
(Bachelard 1929, 64). It is the formal manipulation itself that leads to new empirically
testable results.

To make this point clear, in the second chapter of the book, Bachelard discusses in
particular one example: the procedure of replacing ordinary derivatives with covariant
derivatives in the theory’s equations (65–71).13 As we shall see, to this purpose relativists
do not hesitate to introduce non-tensorial ‘ghost quantities,’ the so called, Christoffel
symbols, that, in certain circumstances, can be made vanish by mere choice of the
coordinates: “The ghost quantity [quantité fantôme] neither exists numerically nor
formally. It is, above all, a pure nothingness. And it is naturally for this reason that it
can be added to a numerical quantity” (64). Indeed, the introduction of such quantities
is justified because of their ‘inductive value,’ as it reestablishes the full tensorial form of
a law by compensating for the terms that transform non-tensorially under an arbitrary
change of coordinates. According to Bachelard, the addition of ‘ghost quantities’ is not
simply an occasional trick but a general methodological strategy: “Tensor calculus has
made it a method. We will try to shed light on the spirit of this method” (65).

The objective of this paper is to elucidate the workings of this mathematical
technique, which Bachelard only briefly references. This exercise is, I think, useful (a) to
clarify Bachelard’s arguments, which are often presented in a less than straightforward
manner and (b) to check whether they stand up to closer scrutiny. To this end,
the paper introduces a few mathematical notions that may be obvious to specialists
but less accessible to the general reader. We hope to strike a balance by following
Bachelard’s main source, namely Becquerel’s (1922a) relativity textbook—extensively

12Contrary to Abramo (2019, chap. 2), in my view, the expression ‘mathematical induction’ has
little to do with the ‘proofs by induction’ used in mathematics.

13A second example, related to the discovery of the field equation (Bachelard 1929, 77–81) will be
analyzed elsewhere.
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quoted by Bachelard on several occasions. In turn, Becquerel ’s work largely relies
on Eddington’s (1921) work, with which Bachelard was also familiar. Specifically,
Eddington’s distinction between ‘artificial’ and ‘permanent gravitational’ fields, as
presented through Becquerel, plays an important role in Bachelard’s book.

2 The Mathematical Meaning of the Notion of Covariant Derivative

Given the centrality that tensor calculus plays in Bachelard’s book, it is quite surprising
how little he attempts to present some basic notions of it to his readers. Bachelard
simply alludes somewhat elusively to the presentation provided by Becquerel (1922a,
1922b). In particular, Bachelard presupposes that his readers are familiar with ten-
sor transformation rules and the algebraic operations (addition, multiplication, and
contraction) that can be performed on tensors at the same point in a manifold xν (for
ν = 1 . . . n) (Becquerel 1922b, §63). His interest lies in the generalization of the notion
of differentiation for tensors—the rate of change of tensor components when passing
from the point xν to the neighboring point xν + dxν . Again, Bachelard could find a
standard presentation of the problem in Becquerel’s (1922b) book (§69). The derivative
of a scalar ∂φ

∂xν
, whose value varies from point to point, transforms like a covariant14

vector Aν under a change of coordinates x′
ν = f ν(xν):

A′
σ = ∂xν

∂x′
σ{

→ transformation coefficient

Aν , (1)

where summation over all the values of the indices that appear twice—once as a
subscript and once as a superscript—is implied.15 One can then easily generalize these
transformation rules to the case of quantities with an arbitrary number of components
of covariant or contravariant character—the so-called tensors. One needs only to
introduce partial derivatives of the coordinates, in one sense ∂x′

µ

∂xσ
or the other ∂xσ

∂x′
µ

respectively, for each contravariant Aµ and covariant component Aν , and sum over
repeated indices. While the numerical values of the components of a tensor change
from one coordinate system to another, the tensorial machinery ensures that tensors
are unaffected by coordinate transformations.

If the derivative of a scalar is, as we have seen, a tensor—specifically a covariant
vector (which is a tensor of rank 1)—the derivative of a vector does not generally
transform tensorially under coordinate transformations. This can be seen by carrying
out the transformation explicitly. If we differentiate both sides of eq. 1 with respect to
x′

ν , one obtains:

∂A′
µ

∂x′
ν

= ∂

∂x′
ν

(
∂xσ

∂x′
µ

Aσ

)
= ∂xσ

∂x′
µ

∂xτ

∂x′
ν

∂Aσ

∂xτ{

tensorial term←

+ ∂2xσ

∂x′
µ∂x′

ν

Aσ{

→ non-tensorial term

. (2)

14By contrast, the velocity dxν

dt is an example of a contravariant vector since xν appears at the
numerator.

15This is the so-called Einstein summation convention: A1B1 +A2B2 + . . .+AnBn =
∑n

ν=1 AνBν =
AνBν .
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where the last term disrupts the tensorial nature of the transformation. In the case
of a linear transformation from one Cartesian coordinate system to another, the
vector components at a neighboring point transform in the same way, that is, the
transformation coefficients in eq. 1 are constant. However, if one performs a non-
linear coordinate transformation and introduces curvilinear coordinates, like polar or
cylindrical coordinates, the coefficients ∂xσ

∂x′
µ

change with position. Thus, there is an
extra term corresponding to their derivatives, which is generally ̸= 0. As a consequence,
if the derivative of a vector vanishes in one coordinate system (the vector field is
uniform), it would become non-zero by simply changing to, say, polar coordinates
(Becquerel 1922b, 165). It would then be impossible to write differential equations in
tensorial form.

To overcome this difficulty, it is necessary to find a tensorial or covariant form of
differentiation that replaces the ordinary derivative. To this end, it is necessary to
introduce a new multi-component object (§69), the so-called Christoffel symbols of the
first and second kinds: [

µν
λ

]
= 1

2

(
∂gµλ

∂xν

+ ∂gνλ

∂xµ

− ∂gµν

∂xλ

)
, (3)

{
µν
τ

}
= gλα

[
µν
α

]
= 1

2gλα

(
∂gµα

∂xν

+ ∂gνα

∂xµ

− ∂gµν

∂xα

)
. (4)

This 3-index symbol is a combination of (ordinary) derivatives of the gµν ’s; that is, it
determines the rate of change of the gµν ’s with respect to the chosen coordinates. Thus,
it vanishes if the gµν ’s are constant. The gµν ’s are the so-called ‘fundamental tensor’
and are defined as usual as

ds2 = dxνdxν = gµνdxµdxν = gµνdxµdxν , (5)

where gν
µ = gµσgνσ = 1 or 0 depending on whether µ = ν or µ ̸= ν. Intuitively, the

gµν ’s can be thought of as ‘conversion factors’ that take the coordinate difference
between two neighboring points xν and xν + dxν and produce their reciprocal distance
ds. For this reason, the ‘fundamental’ tensor gµν is also called the ‘metric,’ that is, the
‘measurement’ tensor. In Cartesian or rectangular coordinates, the gµν ’s have constant
values, and eq. 5 reduces to the sum of squares ds2 = dxµdxµ, which is nothing but
the Pythagorean theorem. Under the change of coordinates, dxν transform like a
contravariant vector16 and gµν ’s like a covariant tensor:

g′
µν = ∂xα

∂x′
µ

∂xβ

∂x′
ν

gαβ . (6)

One can then recover the same invariant distance ds between the corresponding points
x′

ν + dx′
ν in an arbitrary non-Cartesian coordinate system (such as polar or cylindrical

coordinates).
The crucial point is that, unlike the gµν ’s, the Christoffel symbols do not generally

transform as a tensor when switching to a different coordinate system. Indeed, if one
differentiates the g′

µν with respect to x′
λ, x′

µ, and x′
ν , with some manipulation, one can

16Nevertheless, for convenience, low indices are typically used for the coordinates.
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obtain the transformation rules for the Christoffel symbols of the first kind:[
µν
λ

]′

= gαβ
∂2xα

∂x′
µ∂x′

ν

∂xβ

∂x′
γ

+ ∂xα

∂x′
µ

∂xβ

∂x′
ν

∂xγ

∂x′
λ

[
αβ
γ

]
.

Multiplying both terms of g′λρ ∂xϵ

∂x′
ρ
, summing over λ and ρ, and simplifying, one obtains

the transformation rules for the Christoffel symbols of the second kind:{
µν
ρ

}′
∂xϵ

∂x′
ρ

= ∂2xϵ

∂x′
µ∂x′

ν{
→ non-tensorial term

+ ∂xα

∂x′
µ

∂xβ

∂x′
ν

{
αβ
ϵ

}
. (7)

As one can see, once again a term depending on the second derivatives of the coordinates
appears, which spoils the tensorial nature of the Christoffel symbols: if they vanish in
Cartesian coordinates where the gµν ’s are constant, they do not vanish in the general
case where the gµν ’s are functions of the coordinates. In Bachelard’s language, the
Christoffel symbols are non-tensorial ‘ghost quantities’ that can be made to disappear
by a suitable choice of coordinates. However, it is precisely for this reason that they
can be used to ‘compensate’ for how the partial derivative fails to transform like a
tensor. One just needs to take the definition of the non-tensorial term

d2xϵ

∂x′
µ∂x′

ν

=
{

µν
ρ

}′
∂xϵ

∂x′
ρ

− ∂xα

∂x′
µ

∂xα

∂x′
ν

{
αβ
ϵ

}
from eq. 7 and substitutes in eq. 2:

∂A′
µ

∂x′
ν

−
{

µν
ρ

}′

Aσ
∂xσ

∂x′
ρ{

→ = A′
ρ

= ∂xσ

∂x′
µ

∂xτ

∂x′
ν

∂Aσ

∂xτ

−∂xα

∂x′
µ

∂xβ

∂x′
ν

{
αβ
σ

}
Aσ = ∂xσ

∂x′
µ

∂xτ

∂x′
ν

(
∂Aσ

∂xτ

−
{

ρσ
τ

}
Aσ

){
→ tensor

,

where the last term is obtained by renaming the repeated indices α, β, σ as σ, τ, ρ,17

and regrouping. As a result, one obtains the transformation law of a tensor. We can
then replace the ordinary derivative with respect to rectangular coordinates with a
covariant derivative that is independent of the choice of coordinates:

Aµν =

absolute change︷ ︸︸ ︷
∂Aµ

∂xν{

apparent change←

−
{

µν
ρ

}
Aρ{

→ pseudo-variation

. (8)

As one can see, in order to produce the covariant derivative, the ordinary derivative
∂Aµ

∂xν
, that is, the apparent rate of the components of a vector in passing from xν to

17An index summed over is called a indice muet or ‘dummy index’ and can be renamed freely since
it doesn’t appear in the final result (Becquerel 1922b, 149f.).
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xν + dxν with respect to a given coordinate system, must be supplemented by another

correction term, which reflects the “pseudo-variation” −
{

µν
ρ

}
Aρ attributable to the

curvilinearity of the coordinates (Becquerel 1922b, 171)—e.g., in the case one uses
polar or cylindrical coordinates (see also Eddington 1921, 50–53). Thus, through the
addition of a ‘ghost’ term that vanishes in orthogonal coordinates, eq. 8 determines
the absolute change in the vector. While the two summands of eq. 8 do not transform
like a tensor, eq. 8 as a whole is a tensor equation.

The covariant tensor Aµν is called the covariant derivative of the covariant vector
Aµ; if it vanishes in one coordinate system, it vanishes in all coordinate systems. In
a somewhat similar manner, one can obtain formulas for the covariant derivatives of
covariant, contravariant, and mixed tensors of any order (Becquerel 1922b, 166–168).
As a rule of thumb, it can be noted that in all cases, differentiation adds a covariant
index, that is, a subscript index. We can use Bachelard’s somewhat elliptic formulation
to summarize this result:

It is known that the notion of the tensor derivative became established when there
was a desire to find an expression that possessed the characteristics of a tensor and
could replace, in all its roles, the ordinary derivative. It was recognized that the simple
derivative of a vector does not maintain its form in any change of coordinates; in other
words, it seemed that the ordinary derivative of a vector did not have the tensorial
character. To align with the general spirit of tensor methods, it was necessary to add to
the ordinary derivative terms capable of automatically compensating for the changes
that this derivative underwent in a transformation of axes. This was easily achieved by
adding linear functions of the Christoffel symbols. (Bachelard 1929, 66f.)

It is then the addition of ‘ghost’ non-tensorial quantities, the Christoffel symbols, that
assures the tensorial nature of the operation of tensor differentiation. There are “simple
cases” in which the Christoffel symbols are “identically zero”, since they can be made
to vanish by choosing Cartesian coordinates, where the gµν ’s are constant (66f.). This
means that in Cartesian coordinates, “the covariant derivatives of tensors reduce to
the ordinary derivatives” (66f.); however, it is not obvious that this choice is always
possible.

In n dimensions, one is free to introduce new coordinates by providing n independent
functions of the old coordinates. Thus, one can arbitrarily set n components of the
gµν ’s as constant. However, a symmetric tensor (gµν = gνµ) has n(n + 1)/2 independent
components. Thus, one is not free to do the same with the remaining n(n− 1)/2
components. It is necessary to find a coordinate-independent criterion to establish
when a given gµν-system is reducible to a set of constant values (Becquerel 1922b,
§73). By taking the first covariant derivative of the covariant tensor gµν , one obtains
a third-order covariant tensor Qµνσ which, however, vanishes identically. It is then
necessary to arrive at a tensor of fourth order, depending on second-order covariant
derivatives of the gµν This tensor is called the Riemann-Christoffel tensor and consists
of first derivatives and squares of Christoffel symbols:
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Rρ
µνσ =

{
µσ
ϵ

}{
ϵν
ρ

}
−
{

µν
ϵ

}{
ϵσ
ρ

}{ → terms depending on the first derivatives of the gµν

+ ∂

∂xν

{
µσ
ρ

}
− ∂

∂xσ

{
µν
ρ

}{

terms depending on second derivatives of the gµν←

, (9)

thus, it depends only on the fundamental tensor gµν . The vanishing of the Riemann-
Christoffel tensor is the necessary condition that, by an appropriate choice of coordinates,
ensures the metric coefficients assume constant values and Christoffel symbols vanish
everywhere. A manifold that satisfies the condition Rρ

µνσ = 0 is called ‘Euclidean.’ In
this case, the variability of the gµν ’s and the non-vanishing of the Christoffel symbols
are only due to an arbitrary choice of coordinates and can be ‘transformed away’ by
reintroducing Cartesian coordinates. On the contrary, if Rρ

µνσ ̸= 0, the non-constancy
of the gµν ’s is not only a manifestation of the choice of the coordinate system but an
intrinsic property of the manifold. A manifold that satisfies this condition is called
‘non-Euclidean.’

3 The Physical Meaning of the Notion of Covariant Derivative

Once we have outlined the notion of covariant derivative that Bachelard was probably
familiar with, we are ready to appreciate his insistence on the inductive value of the
procedure “that allows us to replace, in certain cases, the tensor derivative with the
ordinary derivative” (Bachelard 1929, 65). Bachelard quotes a passage from Becquerel’s
book describing the process of generalization allowed by tensor calculus in its application
to physics (Becquerel 1922b, 168). In a Euclidean universe where Rρ

µνσ = 0, one starts
from a physical law expressed in orthogonal coordinates by a relation that includes
expressions that are clearly ‘degenerate’ forms of tensors and their ordinary derivatives.
One can then proceed, still in orthogonal coordinates, by replacing the ‘degenerate’
forms with the tensors themselves, and ordinary derivatives with covariant derivatives.
This is simply a formal reformulation of the same differential law in which the Christoffel
symbols appear explicitly. The next step is to postulate that the same law applies
in a non-Euclidean case Rρ

µνσ ̸= 0, when no rectangular coordinate system can be
introduced and the Christoffel symbols cannot be made to vanish over an extended
region (168). Bachelard writes the following comment:

How can we not see that these few lines contain the essence of an extremely new method,
which bases all its justification on a generalizing relation, and all its movement on an
inductive impulse! There are three moments in this method:

1. Purely formal additions that contribute absolutely nothing in terms of quantity;
2. An algebraic game [jeu algébrique] that allows one to move from a particular case

to the general case;
3. Then, once generality is conquered, a statement that invariance does not apply to a

world of ghosts, but that almost always, thanks to the consistency and permanence
of its form, this invariance implies a matter. Moreover, in Einstein’s principle
of equivalence, one find assurance for this adventurous induction which claims,
through a form, to conquer a matter. (Bachelard 1929, 66f.)
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The method Bachelard aims to describe is based on mere algebraic manipulation of
the formulas. One replaces ordinary derivatives with covariant derivatives through
purely ‘formal addition,’ that is, by introducing the ‘pseudo-variation,’ which is a linear
function of the Christoffel symbols, eq. 8. In this way, the gµν ’s are allowed to be
variable, and the expression of a law that was previously valid only in a special class of
coordinates takes a general form that holds in all possible coordinate systems. The
change is here purely ‘formal’ since Rρ

µνσ = 0, and the non-constancy of the gµν ’s can
be made to disappear by reintroducing Cartesian coordinates. The ‘material change’ is
achieved by postulating that the law in its most general, tensorial form also applies to
the general non-Euclidean case Rρ

µνσ ̸= 0 As Bachelard alludes to in the last part of
the passage (and we shall see below), it is the equivalence principle that guarantees
that the laws put in that form are those that hold in the presence of gravitation since
they are supposed to depend only on the first derivatives of the gµν .

If one accepts this assumption, by the purely formal procedure of bringing the special
relativistic non-gravitational laws into tensor form, one can find the corresponding
gravitational laws. Bachelard aims to elucidate “this algebraic induction by following
its application to a specific example” (Bachelard 1929, 67). Bachelard’s example, the
only one he discusses in detail in the book, is taken from Becquerel (1922b, 168f.), who
introduces it just after presenting the notion of the covariant derivative (§60). In turn,
Becquerel sourced the example from Eddington (1921, 49f.). Bachelard’s decision to
highlight this specific case reveals his philosophical intentions. It’s about applying the
formalism outlined in the preceding section to a special case. As is well known, in
special and general relativity, spacetime is a manifold xµ with µ = 1, 2, 3, 4, where

x1 = x, x2 = y, x3 = z, x4 = ct ,

The coordinates x1, x2, x3 refer to spatial coordinates and x4 = ict (where c is the
velocity of light) to the time coordinate; the distance between two close points is
expressed by eq. 5, where ds is allowed to take negative values. Let’s suppose we want
to determine “the most general equation that governs the propagation of an arbitrary
potential φ” (Bachelard 1929, 67) with the velocity of light. An equation of this kind
is called a ‘wave equation.’ By setting c = 1, it becomes a second-order differential
equation in the form:

□φ = −∂2φ

∂x2
1
− ∂2φ

∂x2
2
− ∂2φ

∂x2
3

+ ∂2φ

∂x2
4

= 0 , (10)

where □ is the so-called D’Alembert operator, i.e., the four-dimensional Laplace
operator ∇2 (the divergence of the gradient), which makes the role of time variable
in the propagation of waves explicit (68): “It is with this formula that the problem
of setting up an equation for propagation in pre-relativistic mathematical physics is
completed”, that is, for the case Rρ

µνσ = 0 (68). The examination of the coefficients of
the four terms of the D’Alembertian □φ shows that this equation holds with respect
to a coordinate system where the components of the metric tensor, for µ = ν, take the
‘degenerate’ values:

g11 = g22 = g33 = −1; g44 = +1 ,

while for µ ̸= ν they vanish. In a space-time setting, a coordinate system satisfying
this condition might be called an inertial or Galileian coordinate system. This choice of
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coordinates implies that “the disappearance of the other second derivatives of φ results
from their multiplication with the corresponding gµν which are zero” (68).

By using the formal tools provided by tensor calculus, one can rewrite expression
eq. 10 to “restore all the second derivatives of φ and assign the derivatives taken with
respect to two different variables the corresponding coefficient gµν” (68). In other
terms, we make generic gµν appear explicitly in the equation and substitute ordinary
derivatives with covariant derivatives. Since the potential φ is a scalar, its ordinary
derivative is, as we have seen, a covariant vector φµ = ∂φ

∂xµ
. We can then write eq. 10

in general form by summing over the repeated indices ν and µ:

□φ = ∂

∂xµ

∂

∂xν

φ = gµν ∂

∂xµ

∂

∂xν

φ = gµν ∂2φ

∂xµ∂xν

= 0 , (11)

where the contravariant tensor gµν allows one to ‘lower the indices’ and use only covariant
components. We can clearly see that “this expression reduces to the expression [eq. 10]
since the derivatives with respect to different xµ and xν are canceled by their coefficient”
(Bachelard 1929, 69), which are = 0 for µ ̸= ν. In doing so, “[w]e have only added ghost
derivatives”, which disappear by a suitable choice of the coordinates (69). However,
thereby we have put eq. 10 in a form “that is both more general and more compact
[résumée], more purely algebraic as well”, since “geometric axes of the reference system”,
that is Galilean coordinates, “have lost all privilege” (69). The equation has the same
form in all systems of coordinates.

The derivative of a scalar is a covariant vector φµ = ∂φ
∂xµ

, the gradient. As we
have seen, the derivative of this vector (i.e., the second derivative of φ), “will lose its
tensorial nature. Indeed, we know that the derivative of a vector is not a tensor” (69).
However, while using Galilean coordinates, we may replace the ordinary derivative with
the covariant derivative of ∂φ

∂xµ
, which, as we have seen in eq. 8, is a covariant tensor of

rank 2, φµν . Hence, eq. 10 takes the compact form:

gµνφµν = 0 , (12)
where the mixed tensor φµν is the covariant derivative of the covariant vector ∂φ

∂xµ
. This

is a tensor equation: if it vanishes in a Galileian coordinate system, it vanishes in
all coordinate systems. As Bachelard points out, “this process always refers to the
same method. It specifically requires only the addition of Christoffel symbols that are
identically zero in Galilean coordinates” (69). This is clearly evident if one goes a step
beyond Bachelard and, following Becquerel (and Eddington), writes eq. 12 in a more
fleshed-out form:

gµνφµν ≡ gµν


tensor︷ ︸︸ ︷

∂2φ

∂xµ∂xν{

not a tensor←

−
{

µν
α

}
∂φ

∂xα{

→ not a tensor

 = 0 . (13)

If one uses Cartesian coordinates, the Christoffel symbols vanish and eq. 13 reduces
to eq. 11. In non-Cartesian coordinates, the Christoffel symbols do not vanish and
compensate for the change of coordinates. Thus, if the potential φ propagates according
to the law eq. 10 in Galilean coordinates, it propagates according to eq. 13 in any

13



coordinate systems: “This is indeed a purely formal complement which is not, in
any way, included in the algebraic elements of the initial problem. No deduction, in
particular, could necessarily lead us to it” (69).

Nevertheless, with eq. 12 “we have [. . .] acquired an entirely new property” (70).
Since eq. 12 “now appears in tensor form” (70), φµν is invariant. If φµν = 0 in Galilean
coordinates, it must remain = 0 in any curvilinear coordinates in the case Rρ

µνσ = 0:
“So, from [eq. 10] to [eq. 12], one goes, algebraically speaking, from the particular to the
general” (70), from an equation valid only in a special class of coordinate systems to an
equation that holds in all possible coordinate systems. One might object that thereby
only “a formal generality” has been achieved (70), since we have only put an equation in
tensor form, while Rρ

µνσ = 0. As we have mentioned, it is the equivalence principle that
enables one to achieve “a generality of fact” (70). The equivalence principle guarantees
that by putting a non-gravitational law in tensorial form for the case Rρ

µνσ = 0, one
obtains the corresponding gravitational law valid in the general case Rρ

µνσ ≠ 0: “This
is precisely the case of the law expressed by [eq. 12]” (Bachelard 1929, 71) which only
contains a term depending on the Christoffel symbols, but on the Riemann-Christoffel
tensor. As Bachelard comments:

We have thus found the differential equation, correct and complete, capable of determining
the law of the propagation of the potential φ in the case where this propagation occurs
through a gravitational field. In this way, algebra has been induced to cooperate with
reality, with its own impulse towards calculation, without ever assuming and seeking
instruction from reality as primary. To summarize, let’s take an overall look at the stages
of the construction. The problem was approached through its formal characteristics.
Then the tensorial character, which was truly mutilated by the degeneration of certain
variations, was sought. Once highlighted, this tensorial element, by itself, restored the
law in its entirety. An invariant character then presented itself, allowing the transition
from the particular case to the general case. Finally, the assertion of the principle of
equivalence regulated the osculation of reality through the laboriously and progressively
constructed general framework. (71)

Relativity theory provides is a sort of prescription for deriving gravitational laws from
well-established special relativistic non-gravitational laws. Indeed, the heuristic strategy
just described is not an “exceptional artifice”; on the contrary, it incorporates “a very
characteristic rule of relativistic methods” (72).

One begins with the special-relativistic formulation of a law valid in a Galileian
coordinate system, where the gµν have ‘degenerate,’ constant values and can then be
omitted, and reformulates it as a ‘tensor equation’ in which generic gµν and their first
derivatives appear explicitly. The equations now have the same form in all coordinate
systems: “One could even posit at the center of relativistic thought a true principle
of progress, which could be called the principle of complete functionality” (72). In
other terms, the tensor calculus “re-establishes the diverse components” like some of
the partial derivatives ∂

∂xµ
and ∂

∂xν
in the wave equation eq. 11, that had been “simply

erased due to the coordinate system used”, that is, by choosing a Galileian coordinate
system as in eq. 10. In this sense, tensor calculus “is truly a calculation that aims for
generalization and generalizes by sensitizing all variables” (72); it allows one to put
an equation that holds only in a special class of coordinate systems into a form that
remains the same in all coordinate systems.

In this way, tensor calculus integrates “variations into reality, which, quantitatively
speaking, might have initially seemed purely virtual” (73). Indeed, at first, one
introduces only a ‘formal generalization’ since only values of the gµν ’s are considered
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that are obtainable from the Galilean values by means of coordinate transformations.
One obtains a ‘material generalization’ by allowing for more general gµν-systems, which
are not reducible to the Galilean values by any choice of the coordinates. Einstein’s
theory of gravitation is based on the assumption that in both cases the non-Galilean
values of the gµν ’s (or equivalently the non-vanishing of the Christoffel symbols) are
connected with the phenomenon of gravitation. By this connection, the mere act of
expressing equations in tensor form gains an ‘inductive value’: from special relativistic
non-gravitational laws valid from Rρ

µνσ = 0 one obtains gravitational laws valid in the
general case Rρ

µνσ ̸= 0 by simply replacing ordinary with covariant derivatives. This
inductive inference holds as long if one assumes that the gravitational laws contain
only the first derivatives of the gµν (that is, they do not contain terms depending on
the Riemann-Christoffel tensor Rρ

µνσ).18

Following Becquerel (and Eddington), Bachelard treats the latter assumption as a
reworded version of the equivalence principle (Becquerel 1922b, §§77-78). Bachelard
rightly defines the latter as “one of the most surprising, most beautiful arguments of
relativity” (Bachelard 1929, 74). Because of the identity of inertial and gravitational
mass, the relativists identify a coordinate effect in the case Rρ

µνσ = 0—the non-constancy
of the components gµν due to the introduction of a uniformly accelerated coordinate
system—with the presence of a homogeneous gravitational field (Norton 1985). Then
they extend this identification to the general case in which the non-constancy of the gµν ’s
cannot be eliminated by any coordinate transformation, Rρ

µνσ ̸= 0. Bachelard clearly
understood that this extrapolation embodies “the inductive audacity” of relativity
(Bachelard 1929, 74). Relativists boldly transfer what appeared to be only a redundancy
in the description of the real to the real itself, at “the cost of placing the arbitrary on
the same level as the real” (75). In doing so, they establish an equivalence between an
‘artificial’ (or ‘geometrical,’ in Becquerel’s parlance) gravitational field with Rρ

µνσ = 0
and a ‘permanent’ gravitational field Rρ

µνσ ̸= 0. They can then extend this equivalence
to all laws of nature that involve only the gµν ’s and their first derivatives (see also
130–134).

Conclusion

For Bachelard, the ‘inductive value’ of general relativity is ultimately based on the
following principle: All laws of nature governing phenomena in an artificial gravitational
field, which depend on the gµν ’s and their first derivatives, will also hold in a permanent
gravitational field (Eddington 1920a, 43). Relativity does not provide a deductive proof
of this assertion. Indeed, laws which depend on the second derivatives of the gµν ’s
are not logically incompatible with relativity. Relativity uses this requirement as an
inductive recipe to obtain gravitational laws.19 According to Bachelard, in relativity
such “an induction is promoted to the rank of a method” (Bachelard 1929, 75): (1)
start with the equation expressing a law of nature in which only ordinary derivatives
appear; (2) put it in its tensor form by substituting ordinary derivatives with covariant
derivatives. In this way, one discovers “in a particular case, not only the features of
generality but also the paths to generalization, moving from an immanent generality to
a transcendent generality” (75), transitioning from special relativistic non-gravitational
laws to general-relativistic gravitational laws. As one can see, this mathematical

18For a recent discussion, see Read, Brown, and Lehmkuhl (2018).
19The principle of ‘minimal coupling’ in modern terms.
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generalization is nothing but the modern comma-goes-to-semicolon rule.20

Bachelard’s characterization of this method as a form of ‘relativistic induction’
was clearly meant to highlight the central message of the book by contrasting it with
Meyerson’s ‘relativistic deduction,’ with which most of his potential readers were
probably familiar. However, Bachelard’s ‘promotional strategy’ fell flat. Besides the
1928 glowing review of the book (Einstein 1928), in early February 1929, Einstein
mentioned Meyerson approvingly in a popular article published in both the New York
Times (Einstein 1929a) and the London Times (Einstein 1929b). One can question
whether Einstein’s endorsement was based on a genuine understanding of Meyerson’s
philosophy (Giovanelli 2018). However, it was hard to avoid the impression that
Einstein himself authoritatively emphasized the ‘deductive value’ of relativity rather
than its ‘inductive value.’ .

Bachelard’s book received only a few reviews (Rabeau 1929; A. Bc. 1929; Anony-
mous 1930; Metzger 1930; Spaier 1931–32), without stirring a particularly significant
discussion. When he became a professor at the University of Dijon in 1930, both
the physics and epistemological debates in France were soon captured by the new
quantum theory (Langevin 1931; Meyerson 1933). Bachelard’s (1932) interests also
moved from macro- to microphysics as he developed the ideas of ‘phenomenotechnique’
and ‘noumenology,’ which subsequently became central to his philosophy (Chimisso
2008; Fabry 2019). Yet, he appeared to have kept the central tenet of his interpretation
of relativity unchanged. The second chapter of his next major monograph, Le nouvel
esprit scientifique, opens with a reference to his 1929 booklet and presents relativity as
an example of the ‘new scientific mind’ (Bachelard 1934, 41). Once again, Bachelard
insists on the role of tensor calculus as a genuine method of invention: ‘tensor calculus
knows physics better than the physicist does,’ as Langevin once put it (54). The rules of
index manipulation allow one to check whether an equation is written in coordinate-free
form and, at the same time, reveal new physical insights, the gravitational effects on
phenomena.

The reasons for ‘Bachelard’s silence’ (Fruteau de Laclos 2005) on relativity in
subsequent years have been a matter of debate among scholars (Parrocchia 2014;
Alunni 2019). However, the outcome of this debate is inconsequential for under-
standing Bachelard’s contribution to the history of philosophical interpretations of
relativity. When Bachelard returned to writing on relativity over decade later in his
essay (Bachelard 1949) for Einstein’s volume in the Library of Living Philosophers, his
stance appears to remain unchanged. Langevin’s motto, that tensor calculus knows
relativity better than the relativist himself, once again served as a witty summary of
his interpretation of relativity (578). In the closing of the volume, Einstein (1949) did
not comment on Bachelard’s essay. Bachelard’s philosophical jargon was probably alien
to him.21 Nevertheless, Bachelard seems to have grasped a fundamental point that
was characteristic of Einstein’s own reading of the theory. As Einstein emphasized
in his later years, the true conceptual core of general relativity lies in the possibility
of “tensor formation by differentiation in relation to an arbitrary coordinate system”
(Einstein to Besso, Aug. 10, 1954; Speziali 1972, Doc. 210). Bachelard was the only

20E.g., the four-dimensional inhomogeneous Maxwell’s equations F µν
,ν = − 4π

c jµ become F µν
;ν =

− 4π
c Jµ. The ; implies the Christoffel symbols, incorporating the first derivatives of the gµν ’s, showing

how the gravitational field affects the electromagnetic.
21See, Einstein’s unpublished comment (EA, 2060) about Andrew Paul Ushenko’s essay (Schilpp

1949, 609–645).
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participant in the early philosophical debate on relativity who thoroughly grasped this
crucial point.
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