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Abstract. Planck’s pioneering contributions to special relativity have received less consideration than
one might expect in the historiography and philosophy of physics. Although they are celebrated in
isolation, they are mostly not understood as integral to an overarching project. This paper aims (a)
to provide a historically accurate overview of Planck’s contributions to the early history of relativity
that is reasonably accessible to today’s reader, (b) to demonstrate how these contributions can be
presented against the background of Planck’s ‘Helmholtzian’ vision of relativistic general dynamics
based on the principle of relativity and principle of least action, and (c¢) to argue that Planck’s general
dynamics serves as an illuminating example of the use of ‘principles’ in physics.

Introduction

As the well-worn quip goes, Max Planck made two significant discoveries during his
lifetime: the quantum of energy and Albert Einstein (qtd. in Miller 1981, xxiv). Indeed,
Planck was one of the first to recognize the profound significance of Einstein’s 1905
Annalen paper on the electrodynamics of moving systems and contributed more than any
other to its promotion and early development.! However, while Planck’s introduction of
‘quantum discontinuity’ gave rise to an enormous debate among historians (see Darrigol
2008), his contributions to the early history of special relativity can be counted on one
hand. In a path-breaking paper, Stanley Goldberg (1976) shows that Planck’s work
on relativity should be understood against the ‘philosophical’ background of Planck’s
search for a unified world picture. A more technical account of how relativity was
supposed to bring this unification project to completion was provided only nearly two
decades later in Chuang Liu’s (1992) dissertation. However, Liu focuses on the history of
relativistic thermodynamics (Liu 1993) rather than providing a comprehensive account
of Planck’s contribution to relativity theory.? Such an account has been provided more
recently by Hubert Goenner (2010) in a paper for a volume celebrating Planck’s 150th
birthday. Nevertheless, Goenner does not explore the philosophical underpinning of
Planck’s interest in relativity. In the same volume, Michael Stoltzner (2010) emphasizes

'See Einstein 1913, 1079.
2See, however, the short paper Liu 1997.



the significance of the principle of least action in Planck’s epistemology, but he does
not address its role in Planck’s relativistic work.

To the best of my knowledge, there is otherwise a dearth of scholarly literature on this
topic. Even authoritative general histories of relativity only mention Planck in passing
(e.g., Miller 1981; Darrigol 2022). This is surprising, as not only was a significant
portion of Planck’s scientific production after 1905 dedicated to relativity, but it was
also the topic on which most of his doctoral students worked during the same period.
The reason for this oversight is, fundamentally, a failure to see the forest through the
trees. Planck’s contributions to relativity are celebrated in isolation: the introduction
of the concept of relativistic momentum, the first treatment of thermodynamics in a
relativistic framework, and the establishment of the universal relationship between
energy flow and momentum density. However, they are mostly not understood as
integral to an overarching project.

This paper aims to address what I perceive as a gap in the historical-philosophical
literature. It examines Planck’s work on relativity between 1905 and 1910, contextual-
izing it within Planck’s vision of a general dynamics, the grand unification of the three
classical physics fields—mechanics, thermodynamics, and electrodynamics—under a
single principle, the principle of least action. Section 1 discusses Planck’s treatment of
the relativistic dynamics of point particles and its empirical verification.® Section 2
explores Planck’s dynamics of extended thermo-mechanical systems. Finally, section 3
delves into Planck’s articulation of the philosophical background of his general dynamics.
Through this analysis, the paper aims to achieve the following objectives: (a) to provide
a historically accurate overview of Planck’s contributions to special relativity, (b) to
demonstrate how these contributions can be properly understood within the context of
Planck’s project of a relativistic general dynamics, and (c) to illustrate how general
dynamics serves as a perspicuous example of the use of ‘principles’ in physics.

Suman Seth (2010) has effectively portrayed Planck’s foundational style of doing
physics as the ‘practice of principles,” as opposed to Arnold Sommerfeld’s shut-up-and-
calculate ‘physics of problems’ (Seth 2010, ch. 4). Planck was the kind of physicist
who does not simply try to guess various particular mathematical formulas that fit
the phenomena but aims to uncover the fundamental, general principles that lurk
behind all those apparently disparate equations. These principles, possibly converging
into one fundamental principle, encapsulate what Planck referred to as the ‘unity of
the physical world picture. Seth primarily focuses on Planck’s early contributions to
thermodynamics, in which his methodological stance is rooted. This paper suggests
that Planck’s work on relativity offers another, possibly even more illuminating example
of his ‘practice of principles’

In the legacy of his Berlin mentor Hermann von Helmholtz (1886), Planck emerged
as one of the protagonists of a well-established tradition in the history of physics that,
from Poincaré’s (1904) ‘physics of principles,” found its most celebrated expression
in Einstein’s (1919) ‘theories of principles! Within this tradition, Planck shows a
particularly clear epistemological awareness that physical theories can be broken down
into two components: (a) a general framework entailing the principles that provide for
treating specific interactions—what Planck used to call a ‘general dynamics’; (b) the
various dynamical laws governing those interactions. This ‘stratification’ of physical
knowledge, with its Kantian overtones (Friedman 2000, ch. 3), has garnered renewed

3Due to space constraints, I will omit a detailed discussion of this latter issue. Interested readers
can find an overview elsewhere (Cushing 1981, §IV; Zahar 1989, §6.2).
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attention in recent philosophical literature (Flores 1998; Lange 2016). The paper
argues that Planck’s work on relativity serves as a historical example of how ‘principles’
are used in concrete physics practice to generate new exact laws starting from old
well-established laws that are only approximately valid.

1 Planck’s Relativistic Dynamics of Point Particles

The 26-year-old Einstein (1905b) submitted his first paper on relativity at the end
of June 1905; it appeared in September in volume 17 of the fourth series of the
Annalen der Physik, of which Planck had been a scientific adviser since 1895 (Hoffmann
2008). According to Einstein’s sister’s recollections, Planck initiated correspondence
shortly afterward (see Winteler-Einstein 1924, 23-24). At the beginning of the winter
semester, he presented Einstein’s paper at the Berlin Physics Colloquium, inspiring
the interests of some of his students, like Max Laue (1961b)* and Kurd von Mosengeil.
However, Einstein found that the initial reaction to the paper was underwhelming (see
Winteler-Einstein 1924, 23-24).

It was only in November that Einstein’s relativity work was cited for the first
time by Walter Kaufmann (1905) in his preliminary report of his S-rays experiments
measuring the dependence of the electron mass on the velocity. Kaufmann (1906,
530f.) seemed to be the first to note that, in the final §10 of his 1905 paper, Einstein,
relying solely on the principle of relativity, derived the same formula® for the velocity
dependence of the electron’s mass as Lorentz had obtained by introducing a model of
a ‘deformable’ electron. However, Kaufmann (1906, 495) concluded that the data he
had collected were not compatible with Lorentz and Einstein’s assumption that motion
through the ether is undetectable. In contrast, his data set supported Max Abraham’s
‘rigid’ spherical electron and Alfred Bucherer’s ‘deformable’ electron at constant volume
without allowing a choice between these two models (Kaufmann 1906, 495; see Janssen
2006).

It did not look good for the relativity principle. However, Planck, backed by his
weighty authority, cautioned against making hasty judgments. He intervened publicly
in this debate by presenting his first paper on relativity at the meeting of the German
Physical Society on March 23, 1906. Opening the paper, Planck (1906a) introduces the
‘principle of relativity’ as it was put forward recently by Lorentz and, “in a still more
general version”, by Einstein (Planck 1906a, 136). Planck’s formulation of the principle
goes like this. If the two reference frames (x,y, z,t) and (2/, v/, 2/, t') in uniform relative
translation are to be considered equivalent for the formulations of equations in both
mechanics and electrodynamics, the space-time coordinates must be related by the
so-called Lorentz transformations:

c !/

- - _ I _
x = c2—v2(x vt). Y =y, Z=z.

A (1.1)
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where Planck’s preferred form of the Lorentz factor is utilized:

4Von Laue,” after his father was ennobled in 1913.
5Kaufmann realized that the difference in the value of the ‘transverse mass’ was due to Einstein’s
(1905b) conventional definition of force (919).
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Planck’s version of the principle of relativity differs from Einstein’s. Indeed, Planck
incorporates the Lorentz transformations directly into the definition of the principle,
without introducing the light postulate separately (see Liu 1993, 22-24). Planck
conceded that the acceptability of principle of relativity “appears to have already been
addressed by the latest important measurements by W. Kaufmann, and indeed in the
negative sense” (Planck 1906a, 136). Still, he insists, “further investigation remains to
be done” (Planck 1906a, 136). Planck regarded the results of Kaufmann’s experiments
as the primary obstacle to the acceptance of relativity. However, he probably already
questioned their reliability, a point he would elaborate in detail in a separate paper
(Planck 1906b; see below, section 1.2).

Planck alludes somewhat cryptically to another objection against the Lorentz
‘deformable’ electron raised by his former student Abraham (1904). If the principle of
conservation of energy has to hold, one must attribute to the moving Lorentz electron,
in addition to the electromagnetic energy of its external field, a certain internal potential
energy to account for the work required for its deformation® Thus, the Lorentz electron
appeared to be incompatible with a purely electromagnetic foundation of mechanics,
in which the electron’s ‘inertia’ is exclusively due to the resistance of its own field.”
Abraham considered this to be a serious drawback of the Lorentz electron. However,
Planck points out quite dismissively that one should “attach no decisive importance”
to such an objection (Planck 1906a, 137). He suggests that, as Einstein did, one could
treat the electron as a moving point having the properties of electric charge and inertia,
ignoring the question of internal constitution and shape® In this way, the hypothesis of
no internal change is implicitly assumed and the deformation works “can be included
in the kinetic energy of the electron” (Planck 1906a). The work of external forces is
done only by ‘translational work’ on the electron to accelerate it from rest to speed v.

The fact that Planck addresses this point might suggest that he was already aware
that the clear-cut separation between ‘deformation work” and ‘translational work,’
internal and kinetic energy, was not obvious in the general case of extended systems
(see below, section 2.3). However, by treating the electron as a point particle, this
problem could be provisionally swept under the rug. Planck concedes that, in this way,
“the question of an electromagnetic explanation of inertia remains open” (Planck 1906a,

6Planck does not seem to be aware that Poincaré (1906), in a paper published in January, suggested
introducing a universal external pressure instead of this internal energy, which performs the compression
work on the moving electron; see below fn. |47,

"The electromagnetic momentum of the electron is calculated by taking the integral of the momen-
tum density G = [[[ 1-E x B dV, integrated over the entire space outside of the electron. See below
eq. (3.2). From the change of G one finds the force and, dividing by acceleration, the electromagnetic
mass.

8Like Einstein, Planck does not prove that one can disregard the shape of the electron; indeed,
Ehrenfest (1907) objected to Planck that this does not seem to be the case. As noted by Abraham
(1904) a non-symmetrical charge distribution would rotate if set in motion, violating relativity principle.
For low velocity &, one can use the electrostatic field (B = 0) to calculate the electron momentum (G,
see fn. 7). In components: G, = 2% [[[2E2dV; G, = — [[[ LE,E, dV,and G, = — [[[ E,E. dV.
If the electron is symmetric around an axis parallel to the z-axis, the transverse components G, and
G, are equal and cancel out. However, if this is not the case, the integrals do not vanish and there
will be components of G that are not parallel to &. See also fn. 55.
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137). However, at the same time, “the advantage arises that one does not need to
attribute a spherical shape or any specific form to the electron to arrive at a particular
dependence of inertia on velocity” (Planck 1906a, 137).

1.1 Planck and the Notion of Relativistic Momentum

Ultimately, Planck considers both common objections against the relativity principle
as insufficient to impede further investigation. The relativity principle appears to
embody a physical idea of such “simplicity and generality” that it deserves thorough
examination: “and there is no better way to do this than by examining the consequences
it leads to” (Planck 1906a). To evaluate the validity of the principle of relativity from
its consequences, Planck addresses the task of determining the form of the equations
of motion of a free point mass that must replace the usual Newtonian equations if
the relativity principle must have general validity. In the Cartesian coordinate system
x,y, z,t, Newton’s equations of motion take the form:

mi=F,, my=F,, mi=F,. (1.2)

Planck aims to show that if the relativity principle has to hold, these equations apply
only to a material point at rest but fail for the case of finite velocity ¢, where

q=\/1*+ 9>+ 2. (1.3)

Indeed, applying the Lorentz transformation, one obtains the mathematical expression
eqs. (1.2) with respect to the coordinates )1/, 2/, t'; however, the two expressions
are not identical. As a consequence, the principle of relativity is not fulfilled and the
expression of the law is not acceptable (Planck 1906a, 138). If the relativity principle
has to hold, egs. (1.2) must be modified. For this purpose, Planck suggests starting
from a specific case in which the connection between the components of the force in
both reference systems is known. One such case is the effect of vacuum electric and
magnetic fields, E and B, on a mass point of mass m and charge e. The relationships
between the components of E and B in vacuum in both reference systems were derived
by Einstein (and Lorentz):

E{’E’ - E:D BC’E’ - Bm,
/! c _ g ! c 9

Ey = 2 — 12 (Ey CBZ> B, = 2 — 12 <Ey t CEZ> T (1.4)
[ ¢ B [ ¢ _ E

B, = 2 — 2 (EZ T CB?J) B, = 2 — 2 (EZ CEy)

Planck, like Einstein, supposed that a charged mass point particle is located at the
origin of the coordinate system x,y, z,t and moves along the z-axis with velocity
components & = ¢, v, 2 with respect to it. To find the equations of motion, Planck
placed the particle at the origin of the coordinate system z’,v’, 2/, ¢, comoving with
the particle with speed ¢ along the z-axis, with respect to which the mass point is at
rest. In this coordinate system, the equations of motion take the form of eqs. (1.2),
where F/ = ¢E!:

mi' = qE,, mi =qE,, mZ =qE,, (1.5)

where 2/, 1/, 2/, t' are the coordinates of the electron in the comoving coordinate system.
Departing from Einstein’s derivation, Planck introduces a third coordinate system
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2" y", 2", t", with the spatial axes oriented like the axis of /.y, 2',t. Using the
transformation equation eq. (1.1) for the acceleration components and eq. (1.4) for
the force components, he transformed equations eq. (1.5) written in 2,4/, 2/, ¢’ into
2" y" 2" t". The z-axis of the latter coordinate system are parallel the velocity ¢ but
the system is at rest with respect to xz,y, z,t. In this way, Planck obtained the same
equations that Einstein had obtained in §10 of his relativity paper.” but as functions of
the variables z”,vy", 2", t":

77/Lii§,/

3= eE! (1.6a)
1-g
my” e
-5
mz" e
(e ) e
J1—2 T

From egs. (1.6), one can infer that the same force acting on the same electron (due to
the cube of the Lorentz factor) experiences greater resistance to the change of velocity
(i.e., greater inertia) along the longitudinal axis compared to the transverse direction.
Thus, if one defines the mass m as the ratio of force to acceleration, one obtains two
different notions of ‘mass.’” Indeed, following the terminology used at the time, Einstein
(1905b) distinguished the longitudinal mass as the force/acceleration ratio when the
latter is in the same direction as the line of motion, eq. (1.6b), and the transverse mass
as the force/acceleration ratio when the latter is perpendicular to the line of motion,
egs. (1.6b) and (1.6¢). Einstein could conclude that, according to the new dynamics,
the mass is variable and the longitudinal mass grows more quickly with velocity than
the transverse mass.

However, Planck avoids this parlance altogether and moves forward. He factorizes
the cube of the Lorentz factor out of the left-hand side of eq. (1.6a), and, after some
“elementary calculations” (see appendix A), reshuffles eqs. (1.6) into the equivalent
form:

v/ "/

s = e =~ (¢B) + B} + 'E!) |
-5
s/
e =By ('BY — aBY) (1.7)
T2
7/7]/25//

! € . " . "
\/17—7% =ekb, + - (xBy —yBx) .

C
These equations apply to the case in which the electron moves in the z”-direction with
respect to 2”,y", 2", t" with velocity i, where the longitudinal component, the electric
field, vanishes in the last two equations. Through “a simple rotation of the coordinate
axes”, Planck (1906a, 139) returns to the original coordinate system z,y, z,t, and
obtains equations that are valid in the general case of arbitrary orientation and between
velocity and force, not only when y = 2 = 0:

9Einstein obtained a different value for the transverse mass because of a different choice in the
definition of force.



mi ex e
—— =cb, —— (tE, +yE, + 2E,) + — (yB, — 2By) ,
1— %2 c c
mij ey . . . e . :
— =ecE, — = (tE, +yE, + 2E,) + - (¢B, —iB,) , (1.8)
mz ez e
2

The equations are now symmetric to the three spatial variables. Planck simplifies them
further. By scalar multiplication of egs. (1.8) by i, ¥, 2 and summing, one obtains'’

e (0B, + gE, + 2B,) = MET I+ 25 (1.9)

\/1—%23

The product of force eE and velocity , 9, 2 is the work per unit time or ‘power’
delivered by eE, which, as in classical mechanics, corresponds to the product of mass,
acceleration, and velocity. Plugging eq. (1.9) into egs. (1.8), one obtains:

ma n m(zE + gy + 22) @

2 3 2
q / 2 C
1 C2 1 - %

mij N m(ti + gy + 22) &

3 2
_ ¢ q? C
N

mz N m(&d + g+ 22) @

3 2
i / 2 c
1 =5 1 -4

It can be shown (see appendix |A) that the sum of the two terms on the left-hand side
corresponds (via the chain rule) to the time derivatives of the term on the left-hand
side of the following equation:

—¢E, + < (yB. — iB,)
C

e . .
=eBy + - (2B, —4B;) , (1.10)

d mz e

dt\/@ € +C(y z y)
d my e . .

d mz e
M g+ %iB, —iB,) .
T e —i—c(x y — YB:)

As can be seen, the components of the ponderomotive force exerted by an electromag-
netic field (that is, the Lorentz force) on a charged particle are now defined as the time
derivatives of the components of the quantity on the left side of eqs. (1.11). The latter
then plays the same role as the momentum in classical mechanics. “These equations,”
Planck concluded his derivation, “contain the solution to the problem”: “they form
that generalization of Newton’s equations of motion, which is required by the principle

0This passage becomes clearer when expressing the right side of eqs. (1.8) in vector form. By
scalar multiplication with v, we have [¢(E + B x v) — 5Vv(E-v)-v] = eE - v. This simplification is
possible due to the relationships between the dot product and the cross product: (B x v)-v =0 and
v(v-E)-v=v-(vx E)=0 (by the vector triple product identity).
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of relativity” (Planck 1906a, 137; my emphasis). Still, Planck considers only one force
law here, namely the Lorentz force law. One might want to generalize this result to
non-electromagnetic forces (see Einstein 1908, 433ff.). Possibly, Planck felt that this
generalization was not justified at this stage. I speculate that it is deferred to the last
part of the paper (see below, section 1.2).

Nevertheless, the general methodological gist of Planck’s derivation is already worth
emphasizing. Electron theorists retained the old Newtonian dynamics and introduced
a suitable electron model to explain why the electron mass turns out to be variable,
in contrast to the constant Newtonian mass. Planck appears to have been the first
to appreciate Einstein’s different strategy. Like Einstein, Planck modified Newton’s
equation of motion for charged point particles to comply with the relativity principle,
thereby obtaining egs. (1.11). No hypothesis about the structure of the electron (its
nature, mass shape, charge distribution) is required, and eqgs. (1.11) applies to any
charged point particle, microscopic or macroscopic. Electrons forming the so-called
[-rays emitted by a radioactive material are required only to test the theory, as one
needs charged particles moving at extremely high speeds (see below, section 1.2).

Indeed, Einstein arrived at the same formulas for the variability of the electron
mass as Lorentz on the basis of his electron model. However, for Planck, the superiority
of Einstein’s approach was that he unveiled the general principle lurking behind those
formulas. As is well known, Planck advanced beyond Einstein on a significant point by
defining the force as the rate of change of momentum rather than the product of mass
and acceleration. This simple change allows the introduction of a single ‘relativistic’
variable mass,

mo

Ji-s

instead of two different masses—although Planck often switched back to the more
common language of the two variable masses in subsequent writings. However, in
hindsight, Planck’s result sets the stage for the more radical step of abolishing the very
distinction between the ‘constant’ mass mg and the ‘variable’ mass m. The mass m
in relativity is a constant independent of the velocity. Relativity introduced a novel
relativistic definition of ‘momentum,” which, in contrast to classical ‘momentum’ that
increases with velocity, but more rapidly than the latter, and would become infinite for

q=c.

(where my is the so-called ‘rest mass’),

1.2 The Derivation of the Equations of Motion form the Principle of Least Action

Somewhat in passing, concluding the paper, Planck shows how the relativistic equations
of motion for a free point particle can also be derived using ‘Hamilton’s principle,’ i.e.,
the principle of least action. Planck formulates the latter in a modified form with the
presence of additional terms:

/t1(6H+5A)dt:0, (1.12)

to
where the time ¢ coordinate, as well as the initial and final positions, remain unchanged.
The integral ffol dH is called the ‘action’ W ( Wirkung), and the integrand H is the
so-called ‘kinetic potential.! The term ‘kinetic potential " goes back to Helmholtz (1886).
As we shall see, Planck’s choice of this terminology is essential to understand the
conceptual framework he was working in. For the time being it suffices to say, that, in
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the case of particle dynamics, the kinetic potential H corresponds to the ‘Lagrangian’ L:
the difference in kinetic and potential energy expressed as a function of the Cartesian
coordinates z, v, z indicating the particle position, and the velocities &, 1, 2. A is the
‘virtual work’” done by the external forces F to change those coordinates:

0A = F oz + F oy + F,0y = 0F.

Planck considered Hamilton’s principle in this form, with the inclusion of external
work, particularly advantageous. This formulation not only implicitly contains the
equation of motion but also explicitly separates the difference between the kinetic and
potential energy of the system, on the one hand, and the work of external forces, on the
other. This separation allows for the inclusion of forces that are not derivable from a
potential (see Witte 1906b, 5). From the principle of least action, Lagrange’s equation
with external terms can be derived:

d (OH d (OH d (OH
—|=— | =F, — | =) =F — | = =F,.
dt(@j:) dt(@y) Y dt(&z‘)

From this set of equations, one can derive the equations of motion once one knows

the form of H. For the simple case of a free particle (not inserted in a potential field),
Planck introduces the kinetic potential:

2
H= —ch\/ 1— q—Q + const. , (1.13)
c

A derivation of the laws of motion for electrons from the Lagrangian was common in
electron theoretical literature. However, Planck’s kinetic potential given in eq. (1.13)
is not the electrodynamic Lagrangian adopted by electron theorists.*! but rather the
Lagrangian for a point particle as in classical mechanics. Indeed, by Taylor expanding
eq. (1.13), one obtains, in the first approximation, the classical Lagrangian L = 1/2mg?
of a free particle with the term —mc? + const. The presence of an additive constant
in eq. (1.13) is somewhat puzzling. In classical mechanics, the additive constant is
inconsequential. However, within relativistic mechanics, the existence of any non-zero
additive constant would disrupt the Lorentz invariance of the associated action.'? At
this point, Planck does not appear to be aware or interested in this issue.'® He proceeds
to derive the components of the so-called generalized momentum G as the derivative
of H, eq. (1.13) with respect to the velocity:

G mi o OH_ mp o OH_m

ox 1_%57 dy /1_%37 0z /1_%;'

If we consider a single free particle and use rectangular coordinates, the three quantities
G,, Gy, G, are identical to the rectangular components of the relativistic momentum:

! Abraham (1902a) identifies L = 1 [ (B? — E?) dVdt; the energy and momentum of the electron
are G = g—é, E =G v — L. To determine the form of L, a particular model of the electron is
required.

12By contrast, the requirement that the action should be Lorentz invariant was fully understood by
Poincaré (1906)); see Provost and Bracco 2006.

13Gee below section 2.4.
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Thus, Planck’s choice of H is justified by the fact that it allows one to recover the
definition of relativistic momentum introduced in the first part of the paper.'* It is
worth noting that, as was common in the literature of that time, from the momentum
one can derive both transverse and longitudinal masses—although Planck intentionally
avoided using this language here. If the force acts perpendicular to the velocity, it
changes the direction but not the magnitude of the relativistic momentum G. Thus,
the transverse mass is simply the ratio between the constant momentum and the
velocity. In contrast, a longitudinal force acting in the direction of motion changes the
magnitude of the relativistic momentum G. Using the definition of mass as the ratio
between force and acceleration, one obtains two distinct variable masses with respect
to velocity:

G = (1.14)

G mo dG myo
my=—=—r——, my=——=—-573, (1.15)
q 1_%2 dq /1_§
Ry _ Gt
a  4f dg

where the cube of the Lorentz factor is the consequence of the fact that one has to take
the derivative of the latter with respect to speed and apply the chain rule.

Finally, as is customary in Langrangian mechanics, the generalized momentum can
be used to express the generalized energy E:

H H H 2
Ek:x'a—,+ 0 —l—,éa——H:L—i-const. (1.16)

a: oy " “az s

The quantity E is referred to by Planck as lebendige Kraft, which translates to kinetic
energy.’® In Newtonian mechanics, the zero point of the kinetic energy is arbitrary,
and the constant term in eq. (1.16) is typically set to 0. However, in special relativity,
this choice has significant consequences. When the constant is set to —mc?, eq. (1.16)
becomes identical to the expression introduced by Einstein (1905b, §10). Choosing this
zero point of energy implies that as the speed becomes zero (and the kinetic energy
vanishes), the particle still has a residual energy = mc?. Planck does not address this
issue at this juncture. Instead, he expresses the relativistic kinetic energy in terms of
the relativistic momentum G, that is, the ‘Hamiltonian function,” as follows:

G2
E = mc*\|1 4+ —— + const. (1.17)
m=c

14Via the chain rule d% 1-— c—j =7 multiplying by —mc
2

2

S

one obtains the relativistic

—

(&

ol
i

momentum.

15Planck’s notation can be confusing for modern readers. H represents the ‘Helmholtzian,” cor-
responding to what we now call ‘Langragian.’ However, Planck uses L for lebendige Kraft, which
corresponds to what we would call ‘Hamiltonian.” For this reason, I prefer to adhere only partially to
Planck’s original notation.
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It can be demonstrated that only by setting the constant = 0, the usual relation
between relativistic momentum and energy is recovered'® However, Planck was, of
course, not aware of the proper relativistic form of the momentum-energy relation '
Instead, he uses eq. (2.26) as a stepping stone to transform the equations of motion into
the so-called ‘canonical” form. In this form, the momenta G, G\, G, can be treated as
a new set of mechanical variables alongside x, ¥, z, and ¢:

di 9B  dG, 0E

dt — 0G, dt Oii
dy 9FE dG,  OF
dt — 8G, dt 8y’
di 9E dG,  OF
dt — 0G, dt 93’

In this manner, Planck was able to demonstrate that the relativistic momentum G, as
defined in eq. (1.14), plays the same role in relativistic mechanics as the Newtonian
momentum in classical mechanics. Consequently, he could justify interpreting the time
derivative of the relativistic momentum G as the general relativistic definition of ‘force,’
extending beyond the electromagnetic forces discussed in the first part of the paper.

Young Einstein did not conceal his satisfaction that, at last, his work received the
attention it deserved (Einstein to Solovine, Apr. 27, 1906; CPAE, Vol. 5, Doc. 36). By
introducing the notion of relativistic momentum and relying on the Lagrange-Helmholtz
formalism, Planck brought Einstein’s derivation to a higher level of abstraction, thereby
further freeing it from the reference to electrodynamics. The significance of this
formalism becomes more pronounced in Planck’s presentation at the meeting of the
Physical Division of the 78th Congress of German Natural Scientists and Physicians
held in Stuttgart on September 19, 1906. Planck conducted a meta-analysis of the data
collected by Kaufmann’s experiments (Potters 2019) to decide between the two most
promising theories of the ‘electron’: the Abraham theory and the Lorentz-Einstein
theory. Abraham theory, which assumes the electron as a charged rigid sphere, was
labeled the ‘ Kugeltheorie * (sphere theory) by Planck. On the other hand, the Lorentz-
Einstein approach, characterized by the assumption that absolute motion cannot be
detected, was labeled Relativtheorie'®

By presenting the equations of motion in the Lagrange-Helmholtz formalism, Planck
is able to compare different electron theories with the empirical data within a common
mathematical framework. Initially, Planck derives the observed values of fundamental
quantities, such as the magnitude of the electron’s momentum, from observed data
(the magnetic and electric deflections) independently of the specific form of the kinetic
potential (Planck 1906b, §§1-4). Subsequently, Planck computes the theoretical values
of the corresponding quantities using Abraham’s and Lorentz-Einstein’s kinetic poten-
tials (Planck 1906b, §5). Planck gave great importance to the Lagrange-Helmholtz

16Indeed, through algebraic manipulation of eq. (2.26) and setting the additive constant = 0, one

can infer that E? = (pc)? + (m002)2. However, this derivation is not rigorous since it does not apply
to massless photons. In modern treatments, one starts directly from the assumption that E/c, G are
components of a four-vector.

1"The additive constant still appears in Einstein 1908, 435-436.

181t was during the discussion following Planck’s talk that Bucherer seemingly used the expression
Relativitdtstheorie for the first time.
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formalism. During the ensuing discussion, Planck indicated that he did not take into
account Bucherer’s deformable ‘electron” model because the theory’s equations were
not presented “in the Lagrangian form”, and Bucherer had not determined “the value
of the Lagrangian function H” (Planck 1906b, 760) for his theory.

Finally, Planck compares the theoretical results with the observed data (Planck
1906b, §6). The intricacies of Planck’s ‘meta-analysis’ of Kaufmann’s data have been
discussed elsewhere (Cushing 1981, sec. IV; Zahar 1989, sec. 6.3). Planck, albeit
reluctantly, concedes that the comparison of theoretical values with observed ones
favors the spherical theory over the theory of relativity (Planck 1906b, 757). However,
he also highlights that, according to the observed values, electrons may be moving with
a velocity higher than that of light, contradicting both theories (Planck 1906b, 757f.).
Thus, during the discussion after his lecture, Planck concluded that “the mere fact that
the deviations of one theory are smaller does not imply that it is preferable” (Planck
1906b, 760). However, the question was not purely empirical. Planck agreed with
his former assistant Abraham that the choice between Kugeltheorie and Relativtheorie
is ultimately a choice between the electromagnetic worldview and the principle of
relativity. Indeed, only Abraham’s ‘rigid electron’ is entirely electromagnetic; Lorentz’s
‘deformable electron,’ as explicitly emphasized by Bucherer, requires additional internal
potential energy to be stable (Planck 1906b, 760).

However, as we have seen, the question of the nature of the electron’s mass was
fundamentally irrelevant for Planck. He had lost faith in the mechanical worldview
(Witte 1906b). However, he considered the electromagnetic approach to be excessively
speculative, involving unjustified hypotheses about the electron’s structure. Such
assumptions, he believed, could be avoided by adopting the more ‘sober’ relativistic
approach, based on the validity of a general principle. In contrast, Arnold Sommerfeld
did not share the “pessimistic viewpoint of Mr. Planck” (Planck 1906b, 761). The
38-year-old Sommerfeld famously remarked that he expected physicists under 40 years
of age to prefer the “electrodynamics postulate,” while those over forty the, “mechanical-
relativistic postulate” (Planck 1906b, 761).

This tongue-in-cheek comment vividly reflects the hopes generated by the electrody-
namic worldview in late 19th-century physics. On the contrary, Relativtheorie’s silence
on the nature of the electron’s inertia seemed to be a concession to the old-fashioned
mechanical worldview (Planck 1906b, 761). However, for Planck, framing the problem
in this way was misleading. As one of his students noted around the same time, Planck
did not believe in reducing all physics to mechanics or electrodynamics. His ambition
was to establish “both mechanics and electrodynamics on a common ground that could
not be characterized as either purely mechanical or purely electrodynamic” (Witte
1906a, 784; my emphasis).

2 Planck’s Relativistic Dynamics of Extended Systems

To appreciate the motivation behind Planck’s interest in relativity, one must understand
how Planck conceived this ‘common ground.” A valuable source is Planck’s concise
summary of Hermann von Helmholtz’s impact on theoretical physics for the Allgemeine
Deutsche Biographie—the authoritative reference on prominent figures in German
history—that was published around the same time. In Planck’s assessment, Helmholtz’s
remarkable ability to engage across various branches of physics stemmed from his
reliance on ‘general principles’ that appeared to be valid in all those diverse domains.

12



The principle of conservation of energy, which Helmholtz contributed to establishing
(Helmholtz 1847), dominated the first part of his career. After his later works on
thermodynamics (Helmholtz 1884), it was replaced by principle of least action as
the supreme principle in physics, encompassing the energy principle as a special case.
Helmholtz’s merit was in demonstrating that, similar to the principle of conservation of
energy, the principle of least action, if formulated in a sufficiently general manner, had
significance beyond the motion of mechanical processes to which it was originally applied;
it holds, “for all physical processes of which we have precise cognition”, including
electrodynamic and reversible thermal processes (Planck 1906¢, 472). Helmholtz
generalized the notion of ‘Lagrangian’ encountered in mechanics to that of ‘kinetic
potential’ ¥ Once the ‘kinetic potential’ H for a particular class of systems is known,
eq. (1.12) allows the unambiguous determination of its dynamical laws (Helmholtz
1886).

Concluding his brief overview, Planck stated that, through these investigations,
“Helmholtz has paved the way for a unified understanding of all natural forces. The
realization of his ideas must be brought forth by the future” (Planck 1906¢, 472; my
emphasis). Planck’s ambition was, indeed, to bring ‘Helmholtz’s ideas’ to completion.
At the turn of the century, Planck applied his expertise in thermodynamics to the case
of heat radiation. His goal was to explore the relations between thermodynamics and
electrodynamics, in the hope of building a bridge to the final unification of the three
branches of mechanics, thermodynamics, and electrodynamics under the banner of
a single principle, the principle of least action. However, around 1904/1905, Planck
probably realized that recent research on moving thermal radiation (Hasenéhrl 1904,
1905) suggested that the principle of least action was only valid in the low-speed
approximation.

This realization explains Planck’s early engagement with relativity. In contrast
to most of his fellow physicists, Planck’s interest in Einstein’s Annlen paper was not
motivated by the problem of the structure of the electron. Instead, it was driven by
the assumption that the principle of relativity would allow him to reestablish the exact
validity of the principle of least action. Planck felt compelled to address Kaufmann’s
results only to remove what he perceived as the only serious obstacle to the acceptance
of the exact validity of the principle of relativity (Cushing 1981, 1146). Following
the meeting in Stuttgart in 1906, Planck was optimistic: “[c|oncerning the relativity
principle, I really see no difficulty yet” (Planck to Wien, Oct. 15, 1906; WN). The
contours of Planck’s plan start to become more defined as we follow his research path
in the ensuing months.

2.1 The Von Mosengeil-Planck Paper

In January 1907, Planck wrote to Wien,
the new main editor of the Annalen der
Physik, urging him to agree to publish
an excerpt of the dissertation of one of
Planck’s students, Kurd Mosengeil (1906),
who had tragically died in an Alps acci-
dent in September (Planck to Wien, Jan.
26, 1907; WN)). Following Planck’s sugges-

19Gee below, section 3.3, for more details.

Figure 1: Schematic diagram of a radiation-filled cavity; adapted
130“) Mosengeil 1907, fig. 1



tion, von Mosengeil addressed the prob-

lem of stationary radiation trapped in-

side a moving hollow enclosure or cav-

ity (Hohlraum), a topic first explored by

Fritz Hasenohrl (1904, 1905).° On Febru-

ary of 1907, Planck, with the help of his assistant Laue, finished preparing von
Mosengeil’s work for publication in the Annalen der Physik (Planck to Wien, Feb. 1,
1907; Planck to Wien, Feb. 4, 1907; WN). It was published in the spring of the same
year with the disclaimer “abridged and with a correction by M. Planck”.

Von Mosengeil, following Planck’s lead, introduces an arbitrarily shaped cavity of
volume V' enclosed by perfectly reflecting walls so that radiation cannot escape. If the
walls are maintained at the same temperature 7', the introduction of a small carbon
particle leads to the gradual establishment of a stationary state of radiation (Planck
1906d, §51). A small opening in a large cavity of this kind acts as a perfect absorber:
radiation that passes through the hole bounces around inside but has little chance of
ever escaping again (fig. 1). Thus, the hole serves as a good approximation of a ‘black
body. Due to the second principle of thermodynamics, a perfect absorber must also be
a perfect emitter. Therefore, the ‘cavity radiation’ that manages to escape from the
hole must be a good approximation of ‘black’ or ‘black-body radiation’ (see Planck
1906d).

If the cavity is at rest in the ether system, in which the velocity of light is ¢
independent of directions, all rays, regardless of their direction of propagation, have
the same specific intensity K (0) or brightness. The total energy density w = & (the
energy per unit volume)?*! of radiation at a point can be calculated by integrating the
contributions of rays emitted in all directions within a cone centered at that point,
with solid angle d€2 = sin ¥ d dy expressed in spherical coordinates 4, ¢. Since cavity

radiation is uniform, integrating gives?*:

s 2r ] ) 47
w = / / —K(0)sinvdddy = —K(0) (2.1)
=0 Jp=0 C c
An important result of 19th-century physics was that, if the second principle of
thermodynamics holds, the total energy density w of black body radiation must be a

universal function of its temperature (Kirchhoff’s law):

4
—K(0) = w(T),
c
independent of the material composition and shape of the cavity (Planck 1906d,

ch. 1.2). By further assuming that heat radiation is electromagnetic, it could be proven
(Stefan—Boltzmann law) that this function has the following form:

AT AT 1
= —K(0) = al" = —K(0) = —aT*
w=—K(0)=al"  p=3 K(0)=gaT",

20Tn September 1907, Hasenohrl succeeded Ludwig Boltzmann as the professor of theoretical physics
at the University of Vienna. He was third on the list of candidates after Wien and Planck.

21As opposed to ‘spectral energy density,” which is the energy per umit volume and per unit
wavelength interval.

#2Recall that [ dQ = 4.

phere
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where p is the mechanical pressure excerpts by electromagnetic radiation against the
walls of the cavity (Planck 1906d, ch. I1.2). The factor % is the consequence of the
isotropy of hohlraum radiation at rest.?3

A new set of problems emerged when considering the case of cavity radiation in
motion (Hasenohrl 1904, 1905) at a certain speed ¢. Then rays that form an acute
angle ¥ with the direction of velocity become more intense. By the Doppler principle,
von Mosengeil determines the dependence of the specific intensity K on velocity and

direction (¥, q):
8

(1-%)°
K(,q) = K(0)-———"—3
(1 — %cosﬁ)

where 9 is the angle with the direction of velocity ¢. Since K is not uniform, the
radiation pressure p against the reflecting walls becomes anisotropic (Mosengeil 1907,
870). Due to the resistance of radiation, a greater force will be required to set the cavity
into motion than in the absence of radiation. Matter-free, confined electromagnetic
radiation behaves as if it had an ‘apparent mass’ that increases with velocity, so that the
momentum of radiation is not proportional to the velocity. Bearing in mind eq. (2.2),
von Mosengeil derives the following expressions for the dependence of the energy density
w and momentum density g** and pressure of radiation on direction and velocity:

, (2.2)

T 2r ]
wq:/ / fK(ﬁ q)sind dd de,

2
/ / 1 K (¥, q)sinddddycos?,
9=0

=0 c2
Pqq —/ / fK 9, q) sin ¥dddp(cos ¥ — q)
9=0 Jp=0 ¢

where the extra factor of cos specifies the normal component of momentum. Per-
forming the integration and multiplying by the cavity’s volume V', he obtains the total
momentum G and energy E of moving hohlraum radiation:

1 1+ 1 1+1%
B, = lK(ﬁ q) — 3LV = oV B (2.3a)
1-%) (1-%
447 4 4 aT*V ¢
Gy=7—KW,q) ——5 - V=c—g5, (2.3b)
KT (G
14n 1 T

1
= - , 2.3c
c2
The electromagnetic momentum is equal to zero when the cavity is at rest; if the cavity
moves slowly (compared to ¢), the momentum takes the form:

44 44 4
7TK(O)q, thus m = ¢ fIK(O) = —aT*V . (2.4)

G
17 3¢ q 3 c 3

23See below, section 2.7 for more details.
24For the notion of electromagnetic momentum density, see below section 3.1.
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Hence, as already Hasenohrl (1905) showed, the apparent mass of cavity radiation
at rest is 4/3 its energy, just like the mass of the purely electromagnetic spherical
electron.?® Cavity radiation at constant volume V behaves like a sort of massive rigid
body; however, since its mass depends temperature 7" it does not behave as classical
rigid body even not in first approximation.

Von Mosengeil derived these results through brute-force calculations based on the
well-known properties of radiation, without explicitly using the principle of relativity.
However, in the last §10 of the paper, von Mosengeil (1907) shows how the same
dependence of radiation momentum and energy on velocity could be obtained using
Einstein’s transformation rules for radiation pressure exerted on perfect mirrors (Ein-
stein 1905b, §8). This agreement is not surprising since electrodynamic radiation is, so
to speak, ‘already relativistic. Thus, von Mosengeil could maintain an agnostic position
on the universal validity of the relativity principle (Mosengeil 1907, 904). However,
as one might already guess, Planck believed that it was possible to take the opposite
approach. Assuming the universal validity of the relativity principle, von Mosengeil’s
result emerges as a specific instance of a relation that holds for any mechanical-thermal
system. Once again, according to his general methodological attitude, Planck was not
satisfied with von Mosengeil’s formula but searched for the principle hidden behind it.
The ‘physics of problems’ had to evolve into a ‘physics of principles.

2.2 The Impasse of The Project of a Relativistic Dynamics

Von Mosengeil’s paper appeared in the Annalen der Physik on May 2, 1907. In the
following months, Planck was actively “working on the Lorentz-Einstein relativity
theory” (Planck to Wien, May 24, 1907; WN). He compiled the results of his research
in a paper presented to the Prussian Academy on June 13 (Planck 1907b). Planck’s
motivation for his interest in the problem of moving cavity radiation is outlined in the
opening paragraphs. Usually, as Planck pointed out, the energy of a moving ponderable
system is conceived as additively composed of two components:

— the kinetic energy, which varies solely with the velocity ¢ of the system as a whole
(regardless of its internal state);

— the internal energy, which (regardless of the speed) only depends on the internal
state (density, temperature, chemical composition, etc.).

However, the case of moving cavity radiation shows that this decomposition of the
total energy is generally no longer permissible.

In von Mosengeil’s formula for the energy of moving radiation, eq. (2.3a), the
decomposition into kinetic energy dependent only on velocity ¢ and internal energy
dependent only on the parameters 7" and V is no longer possible. This implication
becomes significant when one considers that any massive body contains within its
bounds a certain finite amount of energy in the form of radiant heat. Planck conceded
that in most systems, other forms of energy will be predominant with respect to
radiation energy. However, the latter is always present. Thus, a separation between
internal and translational energy is stricto sensu never possible in a moving system
(Planck 1907b, 542f.). A change in 7" and V would affect the kinetic energy of the body,

2°Due to symmetry (see fn. 8), the momentum of such an electron moving at low velocity i is:
G. = [[[ EZ = [[[ (E}+ E2) dV. Since the field is spherical: [[[ EZ2dV = [[[ E2dV = [[[ E2dV.
Thus, EZ 4+ E? = 2E2. Recall that the energy E of the electrostatic field is [[[ E?dV = 2E. Thus,
2.2E=4FE.
3 3
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and, vice versa, a change in the kinetic energy might lead to a change in 7" and V.
This result was particularly concerning for Planck’s Helmholtzian research program.

As we have mentioned, Planck aimed to develop what he called a ‘general dynamics’
in which the equations of mechanics and equilibrium thermodynamics were derived
from the principle of least action. However, the application of the principle of least
action requires the separation of the internal energy from the translational energy of the
system as a whole. For example, a possible derivation of thermo-mechanical dynamics
uses V' and S as generalized coordinates; in this case, the internal energy E plays the
role of a thermodynamic potential ?° That is, for a system at rest, the kinetic potential
takes the form H = —F. In classical physics, the value of H’ for the system in motion
can be calculated simply by adding the kinetic energy term: H' = %mv2 — E where m
is constant. However, in the presence of heat radiation, the separation of these two
terms no longer seems feasible. When the system is in motion, the internal energy E
of the moving system might differ from that when the system is at rest in an unknown
manner. Thus, it is not possible to determine H’ simply by adding the kinetic energy
term. As we shall see (see below, section 2.3), Planck prefers an equivalent derivation
of thermodynamics from the principle of least action in which V' and 7" are used as
generalized coordinates, and the so-called ‘Helmholtz free energy’ F' = E — T'S plays
the role of the thermodynamic potential (see Helmholtz 1902) " However, this does
not affect the problem at hand, as F' depends on the internal energy F.

One is forced to conclude that, since one does not know how to calculate the value
of H' starting from H in the general case, principle of least action loses its status as
a fundamental principle. It is true that in most circumstances the decomposition of
kinetic/internal energy is still valid in the first approximation (Planck 1907b, 545).
However, in order to develop a general dynamics, one should be able to distinguish
between exactly and approximately valid statements (Planck 1907b, 545). In fact,
Planck perceptively pointed out that “profound upheavals” in science mostly “originated
from the discovery of almost imperceptible inaccuracies in a theory previously considered
exact by general consensus” (Planck 1907b, 545). Planck, however, envisaged a possible
solution, suggesting that the principle of relativity would come to the rescue:

When we consider [...] the real exact foundations of general dynamics, we find in all
laws known to us, above all, the principle of least action, which, as H. von Helmholtz
has proven, embraces mechanics, electrodynamics, and the two laws of thermodynamics
in their application to reversible processes. [...] But the principle of least action is
not enough to serve as the foundation of a complete dynamics of ponderable bodies;
for it alone provides no replacement for the separation of the energy of a body into a
progressive energy and an internal energy that turned out to be impossible. On the
contrary, the a more primising prospect of such a replacement lies in another theorem:
the principle of relativity stated by H. A. Lorentz and, in its most general form, by
A. Einstein. (Planck 1907bl 545f.)

Planck concedes that the only single direct confirmation of the validity of this principle
was the experiment of Michelson and Morley, which some might still not consider
sufficiently compelling (Planck 1907b, 546). However, the burden of proof was on the
accuser. Planck’s analysis of Kaufmann’s results showed so far “no fact is known that
directly hinders attributing general and absolute accuracy to this principle” (Planck
1907b, 546). Thus, given its great heuristic power, it was legitimate to assume the exact

26See Planck 1910a, 103f.
2"The two formulations are related by a Legendre transformation from E(V,S) to F(V,T).
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validity of the principle of relativity from the outset and draw possible consequences
from it. In particular, Planck could show how principle of relativity allows one to
resolve the issue of the inseparability of the two terms in the total energy of a system
and construct a general dynamics applicable to any thermo-mechanical system.

In this endeavor, Planck could use moving cavity radiation as a sort of ‘theoretical
test body,” whose dynamics is fully known independently (via von Mosengeil’s work) of
the relativity principle: “a system devoid of ponderable matter and consisting only of
electromagnetic radiation, obeys the basic laws of mechanics as well as the two laws
of thermodynamics in such a complete way, that for all consequences drawn from it
one has nothing left to wish for” (Planck 1907b, 542). Thus, Planck could use cavity
radiation (a) to obtain specific results he could not achieve directly via the relativity
principle (e.g., the transformation rules for temperature and pressure) (b) to verify the
correctness of the derivations based on the relativity principle against an independent,
albeit purely theoretical, standard?®*. The privileged role that Planck attributed to
this system is consistent with his style of doing physics.

The question of the structure of the electron, on which most of the contemporary
debate was focused, appeared to Planck as the result of speculative guessing. By making
ultimately arbitrary hypothesis®® about its form, charge distribution, and nature of
its mass, one can calculate how its momentum and energy vary as a function of ¢
and possibly compare the results with experience via Kaufmann-like experiments. In
von Mosengeil’s cavity radiation at constant volume, Planck could find an example
of a moving ‘rigid body’ displaying non-classical mechanical properties: “However,
there is absolutely nothing hypothetical about those properties” (Planck 1907b, 545; my
emphasis). The pressure, energy, and momentum, etc. of cavity radiation are completely
determined by known physical laws, given a few measurable parameters: velocity ¢ < c,
volume V', and temperature 7 “The black cavity radiation in pure vacuum is, among all
physical systems, the only one whose thermodynamic, electromagnetic, and mechanical
properties can be specified with absolute precision, independently of the conflicts of
specific theories. Its treatment, therefore, takes precedence over that of the other
systems” (Planck 1907b, 546).

2.3  Principle of Least Action

After introducing von Mosengeil’s dynamics of hohlraum radiation (Planck 1907b, pp.
547-549), the second part of the paper outlines a general dynamics of thermo-mechanical
systems (Planck 1907b, pp. 547-549). Planck considers a system consisting of a large
number of molecules n with negligible interaction. The translational motion of the
system as a whole is determined by its velocity components &, 3, and 2 with respect to
the unprimed coordinate system x, y, z, ¢, while its internal state depends on its volume
V' and temperature T'. Following Helmholtz’s (1886), in §2 of the paper, Planck shows
how, in pre-relativistic physics, by a suitable choice of the kinetic potential H, the
dynamics of such a system can be derived from the principle of least action, eq. (1.12).
As usual, the kinetic potential H is a function of the generalized coordinates. Following
Helmholtz, Planck chooses as generalized coordinates volume V', temperature 7', and
the magnitude ¢ of the velocity vector i, ¢, Z given by eq. (1.3). Thus, the kinetic
potential takes the general form:

28See also fn. 43.
29See also Planck 1906d, 15.
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H=H(q,V,T).
Lagrange’s equations derived from the principle of least action are as follows:

dOH _ L doH _ . dOH _

dtor 7 dtoyg Y dtoz
where F is the external moving force acting on the system. The so-called Maxwell
relations, are given by:

(2.5)

OH  OH

Planck observes that egs. (2.5) and egs. (2.6) can be regarded as an implicit definition
of the kinetic potential H. However, this definition is not univocal. Indeed, given
a certain force F, pressure p, and entropy S, the value of H is fixed only up to an
additive constant (Planck 1907b, 549). As we shall see, Planck, in section §9 of the
paper, shows that it is possible to set the constant equal to = 0 (see below, section 2.4).
As customary, the generalized momentum is given by:

0H
G=—
oq
with components:
t  OH y OH z  OH
G =G —=—, G,=G-=—, G, =G-—=—. 2.7
q Ot v qg 0y q 02 (27)
The generalized total energy of the system is:
0OH OH
E=q—+T— — H=1G,+Y G, + TS —H. 2.
qaq+ 5T iG, +yGy + G, + TS (2.8)

As is well known, the first law of thermodynamics for an infinitesimal change of state
is 0F = @@ + A. Combining equations representing the first and second laws provides
the expression for the change in entropy as 05 = 0F — % For any reversible energy
transformation in a closed system, we can substitute these into the equation to obtain
that the total work done by external forces in producing a virtual change of state:

deformation work<— — heat transfer

OF = Fyox + Fyoy + F.oz —pdV +T6S = 6A. (2.9)
L

If the system is at rest, the translational work can be neglected, and the only way
the system can do work on its surroundings is by a change in volume under pressure
pdV. The application of the first principle of thermodynamics then gives us simply the
virtual change in internal energy of a system: the difference between mechanical work
0A = pdV and the supplied heat Q) = T'0S. If such a system is in motion, one should
take into account the action of the translational work determining the virtual change
in the kinetic energy of the system as a whole. .

translational work
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As Planck points out, for a system at constant pressure p, instead of energy F, it is
useful to introduce Gibbs’ ‘thermal function at constant pressure’ R, which we now

call the ‘enthalpy’®’ of the system:
L
OH OH OH
R=q¢2 418 g ve 4G4TS —H+pV.

d¢ T Bi%

L

For a system at rest (neglecting the term ¢G), the enthalpy of the system is defined as
the sum of its internal energy and the product of its pressure and volume:

R=E+pV=E+A. (2.10)

From the first law of thermodynamics, 0E = 6Q) + dA, one can infer that, under
constant pressure, the change in enthalpy of a system is equal to the heat added
0R = Q). Depending on the nature of the process, additional quantities called ‘free
energy’ that serve as ‘thermodynamic potentials’ can be defined. In particular at
constant temperature, one can introduce ‘Helmholtz free energy’ ' = E — T'S, which
is mostly used in physics; at constant temperature and under constant pressure, Gibbs’
free energy G = R — T'S, which is mostly used in chemistry.

Helmholtz’s system of thermo-mechanics becomes complete by making explicit the
implicit definition of H given by egs. (2.5) and egs. (2.6). As we have mentioned,
Helmholtz adopted the following form of the kinetic potential H:

i kinetic energy

1
H= §mq2—F. (2.11)

— free energy F =FE —-TS

With this type of dependence of the function H on g, egs. (2.5) becomes the equations of
ordinary mechanics and eqs. (2.6) becomes the equations of ordinary thermodynamics.
Helmholtz achieved a unification of both branches of physics by demonstrating that
both sets of equations can be derived from the principle of least action, eq. (1.12), in
the form:

to
/ [5 <—F + ;qu) + 54 dt = 0
t1

As one can see, in Helmholtz’s thermodynamics, the kinetic potential H is composed of
two terms: the kinetic energy, which depends only on ¢, and the free energy F', which
depends only on the ‘internal’ variables V and T. A change in the kinetic energy of
the system does not affect the variables T', V' and vice versa, a change in T, V' does not
affect the kinetic energy of the system, since the mass is supposed to be constant. As
we have seen, Planck realized that the case of cavity radiation challenged Helmholtz’s
derivation at its core (Planck 1907b, 550f.). For such a system, the decomposition
between mechanical variables and the thermodynamic variables is strictly speaking not

30The Greek term meaning ‘to impart warmth’ was apparently first used in print by Dalton (1909).
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allowed. Mosengeil’s (1907) work shows that the momentum and energy of the cavity
radiation depend on both the velocity ¢ of the whole system and its internal states
as determined by 7, V. Thus, a strict separation of a term proportional to ¢* and a
term depending only on T,V becomes impossible. As a consequence, in the general
case, starting from H = —F the value of the kinetic potential of the moving system H’
cannot be determined by simply adding the term !/2mq?. This means that the laws
of mechanics for a thermo-mechanical system cannot be derived from the least action
principle alone.

2.4 The Principle of Relativity

The Planck-Helmholtz project of unifying mechanics and thermodynamics on the
basis of the principle of least action seems to have reached a dead end. As we have
conjectured, Planck must have perceived this issue early on by reading Hasenohrl’s
(1904) work. Therefore, he might have instructed his doctoral student von Mosengeil
to work on the topic. When he read Einstein’s (1905b) relativity paper in the Annalen,
Planck must have quickly realized that the principle of relativity could come to the
rescue. The Lorentz transformation, eq. (1.1), could allow establishing the dependence
of the kinetic potential H on velocity ¢ in the general case, even when the decomposition
between internal and external energy is not possible: “We do not want to carry out
that decomposition here; instead, we want to rely on the principle of relativity and
develop its consequences for the case under consideration” (Planck 1907b, 551).

Transformations for T and V. For this purpose, Planck needed to derive the Lorentz
transformations for the ‘internal” variables T" and V. Planck introduces a thermo-
mechanical system moving with velocity ¢ with respect to the unprimed frame. The
system is brought in a reversible, adiabatic process to rest in the unprimed reference
frame. To establish a general relation between the unprimed variables 7" and V' and
the primed variables 7" and V', in §§4-7, Planck proceeds roughly as follows. Due to
the Lorentz contraction, it is relatively straightforward for Planck (§5) to show that
the volume V' of a moving system is related to the volume V' of an identical system at
rest by:
vi—vii- L

= - (2.12)
A more challenging task is to derive the transformation for 7. To this purpose, in
§4 Planck first shows that the entropy is invariant. Planck relies on (a) a statistical
argument based on the relation between the entropy of a system in a given state and
the probability of that state, which is supposed to be frame-independent; (b) a more
rigorous thermodynamic reduction ad absurdum (Planck 1907b, 552). The cogency
these arguments cannot be addressed here (see Liu 1993, 17f.). For the scope of this
paper, we readily acknowledge that:

$'=5. (2.13)

Planck (1907b, 548) calculates the entropy S for the special case of cavity radiation
from the relation dS = ¢dG — pdV. By borrowing von Mosengeil’s values for pressure
p and momentum G as function of the energy density w = aT™, he derives the following
expression:
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2
i-5)
From the value of S, one can infer that in an adiabatic-isochoric process, where S and V'

are kept constant, the Lorentz contraction must be compensated, and accordingly, the
cavity radiation must expand. Thus, as von Mosengeil argued, the temperature must

3
decrease in the ratio 7" = T'/1 — ‘é—; . However, imposing the conditions S’ = S and

Vi=V.y/1-— Z—j, Planck concludes in §6 that the relationship between the temperature
T’ of the moving system and the temperature T of an identical system at rest must be,

the following;:
: ¢
T =T4/1— R (2.15)

Thus, radiation in a moving cavity is cooler?! than an identical cavity at rest. Under
the same constraints, starting once again from von Mosengeil’s value for the pressure
eq. (2.3c), Planck shows that p is invariant:

P=p. (2.16)

Planck concludes that the relations thereby obtained for the special case of cavity
radiation can be generalized for a thermo-mechanical system.*? The condition V =

Vi1 — Z—j can be then substituted with the condition p = const. Thus, for the case in
which the acceleration process is adiabatic-isobaric, with S and p constant, one obtains
the following relations for the primed and unprimed quantities:®?

vi_r_jé-¢
vV T 2 —q?’

Transformation for H. After obtaining the transformation rules for 7" and V', in §9
of the paper, Planck investigates the values of the kinetic potential H at rest and
H’ for the kinetic potential of an identical system moving with velocity ¢q. Planck
writes down Lagrange’s equations for the moving system in terms of H'. After some
tedious calculations, he shows how the equations of thermodynamics, egs. (2.6), can be
rewritten using 7" and V' as generalized coordinates. Planck does the same for the
equations of mechanics, eqs. (2.5), relying on the already known case of the Lorentz
force. Planck finds that the difference between H and H' reduces to

2 — 2
/ —
H R = H + const.

Planck has now realized that the presence of the additive constant is an issue (see
above, section 1.2) and provides a quite cumbersome argument to get rid of it. He

31The question of whether the moving temperature is ‘cooler’ or ‘hotter’ later became a matter of
controversy; see Liu 1992.

32For Planck’s argument, see Liu 1993, 19.

33Planck does not derive the transformation formula for heat @ (Liu 1993, 20), which would become
the starting point of a much simpler presentation of relativistic thermodynamics provided by Einstein
(1908, §15).
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shows that, in the case of a system moving in the x direction, the constant does not
depend on V, T, nor on y and 2. However, it can still depend on #. Given the Lorentz
transformations for &, Planck concludes that the additive constant must be a function

of the form:
(2= § A g
! —
H 02—q’2 _H+f<cz_q/2 )

Planck argues that, since H and H' depend only on ¢, V,T, and V,T are related to
V. T" by eq. (2.12) and eq. (2.15), the difference depends only ¢, and it ultimately
simplifies to:
H H C C
VE—¢@ JE=¢ o NCEYZ N ’
This allows Planck to write the relation between H' and H in the Lorentz invariant
form:

H -C H-C

N - NCETZE
where C' is a pure constant that does not depend on any other variables of the system.
H and H — C satisfy the same equations egs. (2.6) and eqs. (2.5). Thus, writing
both sets of equations in terms of H or H — C' makes no difference. Planck concludes
that, setting C' = 0, “represents no physical limitation, but a useful supplement to
the definition of the kinetic potential” (Planck 1907b, 558), which is not univocally
determined by egs. 2.5 and 2.6. Thus, one can write:

(2.17)

H H 2.18

\/CQ—q’2_\/CQ—q2' (2. )

In this way, Planck suppresses the constant which, in his 1906 paper, prevented the

action from being Lorentz invariant.*! In the subsequent section §10, Planck explicitly

emphasized the importance of searching for such invariants, and that the differential

expression Hdt = H'dt' is among them > As a consequence, the value for the time
integral, which is characteristic for the principle of least action, that is the action

w= ["sar = [ sHdt =W
t to
is also an invariant of the Lorentz transformation, that is has the same value in the
primed and unprimed coordinate systems.

However, Planck does not appear to be fully satisfied with this ‘formal” argument
and introduces a further ‘physical” argument to justify the requirement of the invariance
of W. As is well known, to account for the spectral distribution of energy in black-body
radiation, Planck (1900) assumed the existence of quanta of energy w = hv. However, in
his 1906 lectures on heat radiation, Planck noticed that the constant h (6.35 x 1027 erg-
secs) has dimension energy X time, that is, it has “the same dimensions as the quantity
to which the principle of least action owes its name” (Planck 1906d, 155). Thus, Planck
started to speak of the elementary ‘quantum of action’ ( Wirkungsquantum) or the

34Gee above section 1.2.
35 Another important ‘invariant’ pointed out by Planck is t4/1 — g—i, which would soon be recognized

as the proper time.
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‘element of action’ ( Wirkungselement). If the existence of this quantum of action was
accepted, this would justify the assumption of the invariance of the kinetic potential
with respect to Lorentz transformations, since any discrete number of elements is
obviously invariant with respect to Lorentz transformations. Thus, it would be possible
to maintain that “each and every change in nature corresponds to a definite number of
action elements completely independent of the choice of coordinate system” (Planck

1907h).

2.5 General Dynamics of Moving Thermo-Mechanical Systems

At this point, Planck has gathered all the elements to construct his general dynamics
based on two fundamental principles: the principle of least action in Helmholtz’s
version (with the free energy F' as the thermodynamic potential) and the principle
of relativity. The outline is presented in §§10-12 of the paper. Let us introduce the
following notation: for the system in motion, we use H,p, S, E, ... to denote functions
of the three variables ¢, V,T; and for the system at rest, we use Hy, pg, So, Eo, ... to
denote functions of Ty and Vjy:*°

cV T, = cT

Vo= Z— 2 Z-_&

(2.19)

As we have seen, for the thermo-mechanical system, Helmholtz has shown that Hy can
be defined as the negative of the free energy Fj. The relations between the Hy and H
are then:

2
T Hy, Hy=—Fy=—(Ey—TySo). (2.20)

- /c2 —
c

Equation (2.20) allows determining the kinetic potential H of the moving system,
provided that the kinetic potential H, of the stationary system is known. Thus, this
equation achieves the same outcome as the corresponding eq. (2.11) in classical theory.
However, in the relativistic context, separating the two terms—one as a function of
q and the other as a function of T, V—is no longer tenable, except in the low-speed
approximation. Nevertheless, if Fj is provided as a function of V and Tp, eq. (2.20)
allows for the calculation of the value of H. Once H is known, one can derive, as usual,

all state variables of the moving system from eqgs. 2.5 and 2.6 by setting H = /1 — g—zFo.

In a classical setting, Helmholtz obtained both the equations of mechanics and
thermodynamics from the principle of least action; in the new relativistic setting, Planck
obtained these two sets of equations using two principles, the principle of least action
and the principle of relativity. In both cases, one might argue that a unification of
thermodynamics and mechanics is achieved within a more overarching general dynamics,
since both the equations of thermodynamics and mechanics are derived from the same
kinetic potential. However, there is a profound difference. Helmholtz’s unification
between the mechanical and thermodynamic variables was still a juztaposition: the
variable ¢ appears only in mechanical equations and the variables 7" and V' only in
thermodynamic equations. This is no longer the case in Planck’s general dynamics. In
this case, there is a veritable coupling of both types of variables (see Broglie 1995, 159).
The ‘internal’ energy depends on the velocity, and there is no separate kinetic energy
anymore.

36Following the derivation of Laue 1911a, 176f. I have simplified Planck’s notation. Planck introduces
three sets of variables: E for ¢ # 0, Ey for ¢ = 0, and Ej, for ¢ = 0 with T and V4.
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The other fundamental quantities are obtained by taking the partial derivatives of
the kinetic potential H(q,V,T) with respect to the independent variables ¢, T', and V.
Differentiating Ty and Vy with respect to ¢ and keeping, respectively, T and V' constant,
one obtains the following:

Vo _  aVy Ve —¢* Vg O\ _  coly vE—¢  Tyg
9 ), JE—g& ¢ A=g 9 ), JE—£ ¢ AE-¢

By differentiating H = /1 — z—;Fo with respect to volume and temperature and keeping
the subscript variables constant, one obtains the entropy and pressure:

8H> <0H>
o] =p=m. (2] =5=5%.
<8V oT oT oV

By differentiating H = /1 — Z—;HO(TO, Vo) with respect to ¢ and keeping V' and T
constant, Planck derives the total generalized momentum (using the product rule and
the chain rule):

\%
N 0q

c? —¢? R Tog
2

(), -~ =) 0,

dq 2 — ¢? * c Vo \ Oq
— Do

By = —(Ey— ToSo) (2.21)

%
JH 2 2

q " —q q
= —7@ —62 — q2HO + c : 02 —_ q2 (po% + TOSO>

q
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From the generalized momentum, through eq. (2.8), one can derive the generalized

Ey +povo)% .
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energy:

HCF ﬁ (2.22)
— Ly
q2

1—0—2<—
c 7
N 2[%+p0%02+E0 E{Qj
c q?
N/ <E0+CQP0V0> ;

In this manner, Planck establishes for the first time the transformation equations of
the total energy and momentum of a system in the presence of external pressure. From
this it further follows that:

enthalpy(iL
E \%Z FE V R
E+pV = 0ot PoVo 4 G = tr qg=—=q (2.23)

2 [1_ &’ c2 2t
CZ

The importance of this result is difficult to overstate. At constant pressure, the heat
flow equals an increase in enthalpy R. Thus, according to eq. (2.23), it turns out
that the momentum of a moving system can be calculated by taking the heat energy
transferred at constant pressure R and dividing by ¢2. As can be seen, eq. (2.23) makes
the momentum dependent on the energy content, thus a function of ¢, V', and T, and
eliminates the existence of a ‘constant’ rest mass (Planck 1907b, 544).

2.6 Mass and Energy: Adiabatic-Isobaric Dynamics

In the general case of a thermo-mechanical system, not only the transverse and longi-
tudinal masses are different, but—because of the coupling between thermodynamical
and mechanical variables—the dependence of the longitudinal mass on ¢ is contingent
upon the quantities that remain constant throughout the acceleration process?’ If
the pressure py is constant (isobaric acceleration), then a change in Ry is a measure
of the supplied heat; with constant entropy Sy (adiabatic acceleration), Ry remains
unchanged. Thus, in the case of an isobaric-adiabatic transformation (dSy = dpy = 0)
the internal state of the system remains unchanged, and the transverse and longitudi-
nal are universal functions of velocity (see also below 2.7). However, this statement
does not hold in the general case. If, instead of S, the temperature T is constant
(isobaric-isothermal process), heat must be supplied to the body during acceleration
to counteract the temperature decrease established by eq. (2.15). Consequently, R,

37The transverse mass is independent of these conditions since a transversely accelerating force
performs no work. It changes only the direction and leaves the magnitudes of ¢ and G unchanged.
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increases with ¢, and the mass increases faster with ¢ than with constant entropy. One
may consider adiabatic-isochoric, isothermal-isochoric processes, and so forth. Only at
zero speed (¢ = 0), the transverse and longitudinal masses of all types converge to the

same value:
G Ro E() + ng
mo = == ——F

. 2 > (2.24)
This essentially brings back the rest mass mg to the energy of the body, because the
work term poVp/c? is usually very small (e.g., for a system at constant atmospheric
pressure). Since one can provide an absolute measure of my (say, with a weighing
scale) eq. (2.24), it is also possible to fix not only the difference, but also the absolute
measure of the rest energy Fy. However, Planck concedes that this value cannot be
measured by thermodynamic means, since an additive constant remains undetermined
(Planck 1907b, 567). What could be measured in principle is the change in enthalpy Rj.
Equation (2.24) implies that, by adding or subtracting heat under constant pressure
(dpo = 0), the increase or decrease in mass is exactly the difference in heat divided by
c?. However, these energy changes are so small that they are unlikely to be measurable
in practice, even in the context of enthalpy changes due to strong chemical reactions
(Planck 1907b, 566). Thus, any body must store an enormous amount of latent energy
that is not observed in heating and cooling processes (Planck 1907b, 567f.). In these
processes, atoms change their arrangement and state of motion, but remain unchanged
themselves. Therefore, a large proportion of the latent energy E, must reside within
the interior of the atoms. Planck suggests that confirmation of this hypothesis might
arise from heat production associated with radioactive phenomena. However, this effect
is also still too small to be experimentally accessible (Planck 1907b, 568).

As revealed by a footnote, Planck (1907b, 566; fn.) is aware that Einstein (1905a)
essentially drew the same conclusion by applying the relativity principle to a special
radiation process—the case of a rigid body emitting two radiation pulses in opposite
directions. However, he questions Einstein’s derivation (see Ives 1952, 543). According
to Planck, Einstein tacitly assumed that the total energy of the rigid body he considered
is simply the sum of its internal and kinetic energy. However, as Planck’s paper
abundantly shows, this assumption is “permissible only as a first approximation”
(Planck 1907b, 566; fn.). Planck does not elaborate on his objection further. However,
he seems to have realized that Einstein took for granted that the kinetic energy of the
rigid body’s center of mass depends on velocity like the relativistic kinetic energy of a
particle with constant rest mass.*® This assumption is natural in classical dynamics,
but it is generally not true in relativistic dynamics. As a matter of fact, von Mosengeil’s
cavity radiation in adiabatic-isochoric motion provides an example of a rigid body
whose kinetic energy, even at low speeds, does not reduce to a product of constant
mass and variable squared velocity (Planck 1907b, 545). Planck seems to suggest that
Einstein should have first proven whether and under what circumstances his assumption
holds.

As far as I can see, it has not been pointed out that in the last §19 of his paper,
Planck (1907b, 569f.) attempts to provide such a proof. The dynamics of a material
point developed in his previous publication (Planck 1906a; see above section 1), he

38In this manner, Einstein (1905a) argues that, in the limit of low, nonrelativistic velocities, the
kinetic energy of the rigid body assumes the Newtonian form 1/2mgq?. By examining the change in
Newtonian kinetic energies following the emission of a light signal, he derives m; — mgy = E/c? (see
Ohanian 2009).
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explains, is nothing but a special case of adiabatic-isobaric dynamics. In fact, a material
point moves “without external heat supply and under constant zero external pressure”
(Planck 1907b, 569f.). Planck can show that the kinetic potential of any extended
thermo-mechanical system in a reversible adiabatic-isobaric motion takes the kinetic
potential of a point particle. Roughly, Planck’s proof goes as follows. He demonstrates
that his general dynamics can be derived in an equivalent form by using ¢, p, S instead
of q, T,V as generalized coordinates. In other words, instead of an isochoric-isothermal
dynamics, an adiabatic-isobaric dynamics is considered. In this case, the enthalpy Ry
serves as a thermodynamic potential, and the kinetic potential K (S,p,q) takes the

form:>’
2
K=—\1-LR,.
c

According to eq. (2.24), Ry = moc?; then we have:

K = —moc*/1 - = . (2.25)

As one can see, eq. (2.25) is nothing but, eq. (1.13) without the additive constant.*
Then, the adiabatic-isochoric dynamics is derived according to the usual scheme, with

the differentiation of K by the independent variables g, p, S:

0K 0K
(), (as),

G:(W> L OK _ fo
S,p ¢

In the case of adiabatic-isobaric processes, the transformation laws for 7" and V' with
velocity have the same form as the relativistic transformation law of these quantities

T ="1Th/1— Z—z and V =V /1 — Z—;, and the the quantities marked with the index 0
remain constant. In particular, Ry is independent of ¢, and the masses are universal
functions of velocities:

Ko Ko
E—————— m; = —

If the system is at rest, ¢ = 0, one recovers eq. (2.24):

my = —

=Ko Ry  Ey+poVo
METe T e T c? ’

where mg might depend on Ty and V. The dynamics of a mass point that Planck
had developed in his first 1906 paper (see above, 1) becomes the special case of a
reversible adiabatic-isobaric process of an extended system where, however, my is an
absolute constant. In turn, the kinetic potential of any extended system in reversible

39In modern terms, one needs to perform a Legendre transform from the Helmholtz free energy
F(T,V) to the enthalpy R(S,p).

40Contrary to Provost and Bracco 2006, Planck did get rid of the additive constant at the end of
§19.
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adiabatic-isobaric motion is analogous to that of a point particle with mass my = R/c?.
At constant external zero pressure, mg = E/c?. In this way, Planck made an important,
but ultimately rarely mentioned, step towards a general ‘proof’! of the energy-mass
equivalence *?

2.7 The Dynamics of the Cavity Radiation

Once the main lines of his relativistic general dynamics of thermo-mechanical systems
have been established, the third part of the Planck’s paper considers its applications.
In particular, in §15, he deals with the special matter-free case (n = 0) of the hohlraum
radiation in thermodynamical equilibrium. The significance of this system stems from
the fact that, although it may not be physically realizable, the value of Fj can be
determined on the basis of a few macroscopic parameters without making hypothesis.
As we have mentioned, on thermodynamic grounds, it can be shown that the total
energy density w = F/V of radiation at thermal equilibrium within a cavity of volume
V' is independent of the shape and material of the cavity. It is a universal function of
the temperature 7" of the cavity walls alone, u = u(7T"). Maxwell electrodynamics allows
one to establish a relation between the radiation pressure and the energy of radiation
falling on a certain surface element in a time element (see Planck 1906d, §59). It can
be shown that, in the case of isotropic radiation in a three-dimensional cavity, there is
a straightforward relation between the radiation pressure and the energy density of
radiation:

Note that Maxwell’s radiation pressure is a special feature of the electromagnetic
theory and cannot be deduced from general thermodynamic considerations alone
(see Planck 1906d, ch. I1.1). Together, these relations permit the direct application
of thermodynamics to cavity radiation. As we have mentioned, the energy density,
w = E/V, depends only on the temperature, T'. By relying only on the fundamental
thermodynamic relation 6F = §S — PJV and integrating, one obtains the so-called
Stefan-Boltzmann law. According to the latter, the radiation energy density w is
proportional to the fourth power of the temperature T

FE
V:w:aT4.

where a is the Stefan-Boltzmann constant (see Planck 1906d, ch. 2). Substituting these
values into the thermodynamic relation §S = (§F + pdV)/T, and integrating, one can
determine the energy E, entropy S, and the free energy F' of the cavity radiation:

E=al'V, S= iaT:)’V, F=al'V-T (;laT3V> - —;aT4V.

“Laue (1911c, 534) generalized Planck’s proof beyond the case of uniform scalar pressure p; see
section 4.

42Tt is interesting to notice, that, a few months later, Laue informed Einstein that Johannes Stark
(1907) attributed the priority for the mass-energy equivalence to Planck (Laue to Einstein, Dec. 27,
1907; CPAE, Vol. 5, Doc. 70). See Einstein to Stark, Dec. 17, 1908; CPAE, Vol. 5, Doc. 85 for
Einstein’s claim of priority. Stark replied that he was under the impression that Einstein only claimed
Am = AE/c*. Thus, Planck’s m = E/c? appeared to Stark as a new result (Stark to Einstein, Feb.
19, 1908; |CPAE, Vol. 5, Doc. 87).
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As can be seen, the result has been obtained only by using the laws of electrodynamics
and thermodynamics, without resorting to any microscopic assumption (Planck 1907b,
563). Using the definition of E, S, and F', one can finally find that the kinetic potential
Hy for the cavity at rest using the appropriate transformation formulas for Ty and Vj.
Since, as we have seen, H = Hyy\/1 — g—;, one can calculate H for the cavity in motion
if one knows the value of Hy:

H

1Ve2—q? aE=F Ty Yo TV
= VO Ty, =2 ads 0 ) =0 227)
3 ¢ 3 ¢ ME=F \VP—¢q

3 (- ¢

Given eq. (2.20), one only needs to determine the free energy Fy of the radiation at
rest to calculate the value of the kinetic potential H of the moving system. Notice
that in the kinetic potential of cavity radiation there is no separation between the
internal energy of the system at rest and its kinetic energy when in motion. However,
the kinetic potential of the moving cavity can be unequivocally determined. Planck
has achieved his goal. All remaining thermo-mechanical properties of the cavity at
arbitrary velocity—pressure p, energy F, and momentum G, etc.—can be computed
provided that Fj is known for the cavity at rest.

As expected, Planck obtains the same results, egs. (2.14) and (2.3a) to (2.3c), that
von Mosengeil derived from purely electrodynamic considerations (Planck 1907b, 564).
In this sense, Planck provides a sort of external confirmation of his derivation based
on principle of relativity, and at the same time shows von Mosengeil’s formulas as a
special consequences of that universal principle*® For ¢ = 0, Planck found the following
values:

Ey=aTyVy=a
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The energy and momentum in the moving cavity at any velocity ¢ are:
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In the formula for energy, the three independent variables ¢, T, and V' appear, ruling
out once again any decomposition into a kinetic energy dependent only on ¢ and an
internal energy dependent only on 7" and V' in the theory of relativity. Mechanical

43This agreement serves as a sort of ‘theoretical test’ of Planck’s derivation from the principle of
relativity. However, Planck also hoped to provide an ‘experimental test,” by measuring the influence

of Earth’s motion on the radiation intensity of a black body: “If only (%)2 weren’t so ridiculously
small! It’s a true pity” (Planck to Lorentz, Oct. 19, 1907; SCHAL, Vol. 1, Doc. 157).
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quantities, such as momentum G, are determined not only by velocity but also by
temperature and volume, as are the masses. The transverse mass of radiation is:

B g _ Eo+poVo 1 4 ac®T*V c 4ct aT*V

= =5 = . (228
Ty c? 1-< 3 (@) (- 3 (- (2.28)

Since the magnitude of the momentum does not change in the case of a transverse
acceleration, one can simply plug Ej into the relativistic formula for the transverse
mass, eq. (1.15). In contrast, in the context of longitudinal acceleration, as discussed
earlier, the mass is fully determined only when the manner in which the change of state
occurs is specified. If temperature T" and volume V are held constant, one obtains the
isothermal-isochoric mass:

0G  4dact 2 + 5q?
=0 2 ey T

g¢ 3 (= q?)
where a heat supply must occur to prevent temperature 7" and volume V' from decreasing
according to eqgs. (2.12) and (2.15). The longitudinal adiabatic-isochoric mass is

4092 _ 2
my — (8G> _ dac (3¢ ?1 )T4V.
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and so forth. Once again, a particularly significant situation arises in the case of the
longitudinal adiabatic-isobaric process, where quantities with index 0 do not change
during the acceleration process. Consequently, one only needs to use the relativistic
formula for the longitudinal mass eq. (1.15) and plug in the value Ej:

my

oG Eo + poVo 1 4 ac®T*V c dac*T*V
m; = —_— = _ _ .
\ad/s, ¢ o2 3F (@@ (@-g): 3(-g¢)
(2.29)

It is apparent that, according to egs. (2.28) and (2.29), the mass of cavity radiation
in adiabatic-isobaric motion at constant Ty behaves like that of a relativistic point
particle, eq. (1.15). Of course, for the case of the cavity at rest, one always obtains the
same value for the rest mass:

— Ey ’_Epo

 Eo+poVo aVoTy + LaTyVo _ Ey+3E, 4E, 4 ac®’T*V
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Planck can then conclude that pure radiation (without matter) has a ‘mass’* which
amounts to 4/3 of its rest energy: mgy = 4/3Ey/c*. This formula for the ‘apparent’ mass
of cavity radiation was, of course, already obtained by Hasenohrl (1905).*° However,

4“Planck (1907b, 544) suspected that radiation has ‘inertial’ but not ‘ponderable’ mass, suggesting
that the identity of inertial and gravitational mass must be questioned. Einstein (1908)), of course,
took the opposite route.

45G8ee above, eq. (2.4).
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once again, Planck sought the principle beyond the formula and arrived at a result
that applies to any thermo-mechanical system (see Hasenohrl 1907, 1908).16

Still, as is evident, also Planck does not recover the relativistic relation mg = Ey/c?.
Surprisingly, he does not address the issue explicitly. A solution to the 4/3 paradox for
the case of hohlraum radiation seems to have been first suggested by Einstein (1907,
§2; 1908, §14) at around the same time. Cavity radiation can exist only within the
walls of a container; otherwise, the radiation would fly apart. The factor 4/3 arises
from the radiation pressure py on the walls, which, as we have seen, is 1/3 of the energy
density wg. Thus, the total energy is Ey + poVo = Eo + 1/3Ey. However, if the system
is in equilibrium, that is, if the rest volume Vj is to be kept constant, there must
be an inward pressure, exerted by forces not belonging to the system, that exactly
balances the outward pressure of radiation. Such external forces do not perform net
work; yet they contribute to the total energy of the moving system, by —poVp = —1/3E,
reducing the 4/3E, to Ey. Planck did not appear to have emphasized an implication of
his own result: the inward pressure p of the cavity material walls must also negatively
contribute to its total energy even without performing any ‘deformation work.” With
this addition, the pressure term vanishes and the complete system ‘cavity radiation +
walls’ in adiabatic-isobaric motion behaves like a point particle of mass:

I Ey aTVo

07 2 T a2
However, also Einstein was only able to apply this reasoning to particular case studies
without providing a universal proof valid for all physical systems.*” As we shall see,

Planck soon made an important step in this direction.*®

3 Planck’s Relativistic General Dynamics

On June 28, 1907, a few days after presenting his paper on general dynamics, Planck
intervened at the German Physical Society, offering further reasons to question the
reliability of Kaufmann’s results (Planck 1907a). At this point, Kaufmann’s experiments
no longer presented a ‘stumbling block’ to the acceptance of principle of relativity
(Cushing 1981, 1146). The issue of the compatibility of the principle of least action
and the principle of relativity came to the forefront. In a letter written a few days
later, Planck sought Einstein’s opinion on this ‘burning’ question (Planck to Einstein,
Jul. 6, 1907; CPAE, Vol. 5, Doc. 47). Planck complained about Bucherer’s opposition

46Hasenohrl (1908, 215) was quite bitter that Planck did not mention his work.

4TThe same solution applies to the spherical electron’s 4/3 factor (see above, fn. 25). To counteract
the Coulomb repulsion between the parts of the electron, one needs to introduce a scalar ‘Poincaré
pressure’ p by some attractive non-electromagnetic force; the latter, although it does not perform
work pAV, must contribute to the total energy of the electron with the amount —1/3E/c?. The total
energy of the electron becomes E/c?. In the case of the Lorentz electron in motion, these forces must

also carry out ‘deformation work’ p(V’ — V') to compress the electron, where V' =V /1 — g—z; if the

‘Poincaré pressure’ is proportional to the volume pV’' = pV /1 — Z—Z, the total internal energy of the

Lorentz electron E/c? does not change. Thus, as Planck surmised, ‘deformation work’ can be ignored,
and external forces perform only ‘translational work. In other terms, the electron can be treated as a
point particle of mass E/c?. See section 1.

48Laue (1911a) is usually credited with having shown that the case of cavity radiation, as well as
that of the electron (see section 2.7), are all special cases of the so-called Laue’s theorem. See below,
section 4.
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to his general dynamics because he did not believe the two principles to be compatible.
However, Einstein seemed to have been on Planck’s side: “It is all the more delightful
for me, therefore, to gather from your esteemed card that you do not currently share
the views of Mr. B.” (Planck to Einstein, Jul. 6, 1907; CPAE, Vol. 5, Doc. 47). As
Planck continued, “the proponents of the principle of relativity still constitute such
a small bunch [Hduflein]”, and it was of great importance that they form a common
front (Planck to Einstein, Jul. 6, 1907; CPAE, Vol. 5, Doc. 47).

However, the ‘small bunch’ was quickly gaining new acolytes. In September, Einstein
accepted Johannes Stark’s request to write a review paper on relativity (Einstein to
Stark, Sep. 25, 1907; CPAE, Vol. 5, Doc. 58). Despite the difficulty in obtaining
the literature, Einstein was already aware of Planck’s two contributions to relativity.
In the final version of the paper, Einstein included both Planck’s results, however,
without giving much emphasis to the principle of least action (Einstein 1908). In
October, Hermann Minkowski wrote to Einstein requesting a copy of his relativity
papers (Minkowski to Einstein, Oct. 9, 1907; CPAE, Vol. 5, Doc. 62). In a lecture
to the Gottingen Mathematical Society, delivered on November 7, 1907, Minkowski
expressed his first thoughts on relativity and discussed Planck’s 1907 paper on the
dynamics of moving systems. Specifically, Minkowski suggested that the invariance of
the action could be directly derived within his four-dimensional formalism without the
need to detour through thermodynamics (Minkowski 1907).

1908 marked a pivotal year for relativity. Einstein’s (1908) review paper appeared
in January. In April, Minkowski (1908) published his paper on the electrodynamics of
moving media with the first mature presentation of his four-dimensional matrix calculus.
By July, Bucherer (1908) published the results of his experiments on electrons that were
more favorable to relativity. Planck hoped to finally meet Einstein in person at the
80th meeting of the Gesellschaft Deutscher Naturforscher und Arzte, which was going
to be held from September 20 until September 26, 1908 in Cologne (Planck to Einstein,
Sep. 8, 1908; CPAE, Vol. 5, Doc. 118). However, young Einstein, who was still working
as a part-time physicist, was exhausted and did not attend** Nevertheless, the meeting
is commonly recognized as a key turning point in the reception of relativity theory
in Germany. On September 21, Minkowski (1909) presented relativistic kinematics
as a four-dimensional geometry. On September 22, Bucherer (1909) presented his
experimental results as a confirmation of relativity. Finally, on September 23, Planck
(1908) delivered a seminal, although somewhat neglected, paper on relativistic dynamics.

3.1 The Principle of Action and Reaction in General Dynamics

In his Cologne talk, Planck addressed the role of the principle of equality of action and
reaction in relativistic general dynamics, showing that the principle does not only apply
to “mechanics in the narrower sense but also electrodynamics and thermodynamics”
(Planck 1908, 828). Newton’s principle of action and reaction seems to be violated in
Lorentz-Maxwell electrodynamics. The electromagnetic field produces the acceleration
of the electrons, and the electrons gain momentum. However, it is unclear where the
momentum comes from, as Lorentz ether, the seat of the electromagnetic field, has
no movable parts (Poincaré 1900). It was Abraham (1902a), Planck explained, that
suggested that the principle could be saved by introducing the notion ‘electromagnetic
momentum’ in analogy to that of ‘electromagnetic energy.

49Gee Einstein to Stark, Dec. 14, 1908; CPAE, Vol. 5, Doc. 132.
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The energy principle is compromised when the electromagnetic energy is not taken
into account. Similarly, the action and reaction principle is violated when relying
exclusively on mechanical momentum, the momentum of the moving electrons. It can
be reinstated once an ‘electromagnetic momentum,’” the rather unintuitive notion of
momentum of the field, is introduced (Planck 1908, 829). The gain of momentum by
the electrons is compensated for by a loss of momentum stored in the field. After all,
just as there are different kinds of energies in addition to mechanical energy, it is not
surprising to introduce various types of momentum alongside mechanical momentum.
In a field theory, one has to introduce the corresponding densities and fluxes. Thus, just
as the electromagnetic field has an energy density w = % (E? + B?), one can attribute
to it a certain momentum per unit volume, a momentum density g.

Planck sought to investigate whether, from the standpoint of relativistic general
dynamics, a new definition of momentum was possible that includes both mechanical
and electromagnetic momenta as special cases: “An affirmative answer to this question
would, in any case, lead to an advance in the understanding of the true meaning of
the principle of reaction” (Planck 1908, 829). As we have seen, Planck proved that
in the theory of relativity the momentum of a thermo-mechanical system is defined
by eq. (2.23). Let us divide the expression eq. (2.23) by the volume V to obtain the
energy density w = F/V and the momentum density g = G/V. Of course, pV/V = p:

=2 (3.)
As Planck suggests, equation eq. (3.1) can be understood by considering a fluid flow
through the surface S of the enclosed volume V. If the fluid has density o, then pq
can be termed the ‘mass flux. Similarly, in eq. (3.1), if w is the energy density, then
w5 corresponds to a flux of energy density, and pJ% represents the additional energy
flow resulting from external pressure. Equation eq. (3.1) asserts that when the flow of
energy is multiplied by 1/¢2, it equals the momentum density g, i.e., the momentum
per unit volume in space. At constant pressure p, the energy density flux is nothing
but the flux density of heat energy, which contributes to the momentum density.

Already in October 1907, Hasenohrl (1907) noticed that Planck’s eq. (3.1) resembles
the relation introduced by Abraham in the context of electrodynamics. Whenever there
is a flow of electromagnetic energy, the energy flowing through a unit area per unit
time Spy = ZE x B, when multiplied by 1/ c2, is equal to the momentum per unit
volume in space:

8em = SCE2M (32)
For Abraham, the relation between momentum density and energy flux is valid only
within electrodynamics; Planck transformed it into a general theorem of relativistic
general dynamics. Whenever there is a flow of energy of any kind (field energy, heat
energy, or any other type of energy), the energy passing through a unit area per unit
time, when multiplied by 1/c?, always equals the momentum per unit volume in space.
As Planck put it in a famous passage:

In the theory of relativity, momentum can now be traced back in general to the vector
expressing the flow of energy, not only the Poynting electromagnetic energy flow but
the energy flow in general. From the perspective of the theory of local action, each
type of energy can only change its location in space through continuous propagation,
not through abrupt changes. Therefore, the energy principle generally requires that the
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change in the total energy within a volume be equal to a surface integral, namely the
algebraic sum of the energy flowing into the volume through its entire surface. The
flow can occur through radiation, as in the Poynting vector, through conduction, as
in pressure or impact and heat conduction, and through convection, when ponderable
atoms or electrons enter the considered surface. In any case, the total energy flow at any
point in space, per unit of surface and time, is a specific finite vector, and the quotient
of this vector by the square of the speed of light ¢ is generally the momentum per unit
volume. (Planck 1908, 829)

The proportionality of energy flux density and momentum density has been established
for the electromagnetic field through the correlation between the Poynting vector and
momentum density. However, Planck can now assert its universal validity, presenting it
as a consequence of the relativity principle. If the principle of relativity holds, then the
momentum density of a system of any kind can be computed by dividing the energy
flow in the desired direction by ¢?. Planck famously labeled this generalized principle
of equality of action and reaction as the ‘theorem of inertia of energy’:

S

2’

g= (3.3)

This theorem can be viewed as a generalized form of the principle of the equivalence of
mass and energy. While the latter pertains solely to total energy, Planck’s theorem
also addresses the localization of momentum and energy.*

Proceeding further, Planck pointed
out that, just as energy conservation im-
plies the concept of energy flux and flux
density, the conservation of momentum
also implies the concept of ‘momentum
flux” and the corresponding ‘flux density.’
Intuitively, flux is the total amount of a
quantity passing through a surface. If
the flux is non-uniform, it must be repre-
sented by a surface integral over the flux
density. Since energy density w is a scalar
field, the energy flux is expressed by a sin-
gle surface integral; thus, the energy flux
density is a vector S°! However, since mo-
mentum is a vector, momentum flux must
be expressed by three surface integrals, Figure 2: Cauchy stress tetrahedron
corresponding to the three components of
momentum density g. Planck concluded that the momentum flux density must take
the form of a ‘tensor triple,” a mathematical object introduced by Woldemar Voigt
(1898) to describe the stresses and strains of crystals. In Voigt’s parlance, a ‘tensor’
is a two-sided vector indicating tension and compression along a line acting on the

50For Planck’s emphasis on the localization of energy, see Planck (1887, 244-246).

51As far as I can see, Abraham (1909, 739) was the first to suggest that Planck’s ‘inertia of energy’
provides a solution to the 4/3 problem (see fn. 25). As we have mentioned, a concentration of
electric charge requires a material support that exerts a mechanical cohesive pressure (see fn. 47).
If the electron is in motion with velocity &, this scalar pressure is always accompanied by a flow
of mechanical energy/momentum density —g = fpVC% in the opposite direction to motion, which
contributes negatively to the total momentum.
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surface of an elastic body. Stresses can be characterized by three of these ‘tensors’ in
three perpendicular directions, a ‘tensor triple’ (see Abraham 1902b, 28). In Planck’s
notation, taken from Abraham (1902b):

X, = X, cos(nz) + X, cos(ny) + X, cos(nz),
Y, =Y, cos(nz) + Y, cos(ny) + Y, cos(nz), (3.4)
Zy, = Zy cos(nz) + Z, cos(ny) + Z, cos(nz) ,

where n is the normal to a plane of unit area inclined to all three coordinate axes
x,y,z (see fig. 2); cos(nz),cos(ny),cos(nz) are the so-called direction cosines, the
cosine of the angles between n and the coordinate axis z,y, 2. It can be shown
that cos(nz), cos(ny), cos(nz) are the projection areas of the unit area plane onto
the coordinate planes?®? X,,Y,, Z, are components of a force acting on the sloping
surface of unit area. In relation to the orientation of the plane, each component can be
represented as the resultant of vectors acting across the projected areas with components:
X, Xy, X3 Y0, Y, Y. 2., 2y, Z,. Since X,,Y,, 2., X, =Y,,Y, = Z,,Z, = X, there
are only six independent components. The capital letters indicate the direction of
the respective force component, and the indices indicate the normal direction of the
projected areas on which the respective component acts. A force parallel to = acting
on the area cos(nz) will give a normal stress of X, cos(nz). However, this is equivalent
to saying that X, cos(nx) is the rate of flow of the z-component of momentum through
the unit area cos(nz) perpendicular to z.°

In the case of electromagnetic momentum flux in a vacuum, the tensor triple
corresponds to the so-called ‘Maxwell stresses’” used in electrodynamics; in the case
of mechanical momentum flux, the tensor triple corresponds to the ‘elastic stresses.’
This is a powerful result that will soon be used® to go beyond the case of scalar
pressure p that Planck considered in his previous papers®® After the introduction of a
non-mechanical ether, ‘Maxwell stresses’ in empty space lost their physical significance
because, contrary to ‘elastic stresses,” they could not be considered as representing the
state of a material medium. However, Planck argued that its physical meaning might
reemerge by adopting the notion of ‘momentum flux density’ and ‘momentum density.
Needless to say, this does not imply that we should picture Maxwell stresses as elastic
stresses of the ether, as in the old attempts to provide a mechanical interpretation of

52The areas of the faces of the tetrahedron perpendicular to the z,y, z axes in fig. 2.

53The word ‘triple’ was later dropped. The ‘triple of tensors’ was replaced by a single multicomponent
object called ‘tensor,” more precisely a symmetric second-order tensor p. In today’s familiar ‘Voigt
notation,’” the latter can be presented as a 3 x 3 matrix p;x = pg; with six independent components
(Voigt 1910).

54 About a year later Abraham (1909, 739) suggested that the relations between mechanical energy
density, and flow, momentum density, and stresses/momentum flow could become part of a four-
dimensional symmetric two-rank tensor, just like the corresponding electromagnetic quantities shown
by Minkowski (1908) to be part of an electromagnetic tensor. This idea was later developed by Laue
(1911c). See below,s section 4.

2> As later pointed out by Laue (1911c), with the multi-component notion of ‘stress’ (instead of
scalar pressure), one can address Ehrenfest’s objection against Einstein and Planck’s neglecting of the
shape of the electron (see fn. 8). If the electron is non-symmetric, Maxwell stresses will exert a torque
on the material frame of the electron; to counteract the latter, elastic stresses acting tangentially to the
velocity & emerge, pyy and pg.. The latter implies additional inward energy flows to which mechanical
momentum densities always corresponds: —g, = —pzyc% and —g, = —pmc%. They compensate for
the nonparallel components of the electromagnetic momentum. As a result, the fotal momentum
fff gen + 8ur AV is parallel to the velocity.
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electromagnetic phenomena. From the point of view of Planck’s general dynamics, both
the mechanical interpretation of electromagnetic phenomena and the electromagnetic
interpretation of mechanical phenomena are equally misleading. Instead of trying to
reduce mechanical momentum to electromagnetic momentum or vice versa, relativistic
general dynamics introduced a new notion of ‘momentum,” of which both mechanical
and electromagnetic momentum were only special cases. As we shall see, in the following
months, Planck found an opportunity to delve into this notion of unification in greater
detail.

3.2 Planck’s General Dynamics. The Philosophical Outlook

In his Cologne lecture as well as in the discussion that followed, Planck refrained from
making an unconditional commitment to the relativity principle, awaiting experimental
verification and a comprehensive investigation of its consequences (Planck 1908, 829).
However, in private correspondence with Lorentz—who could not attend the Cologne
meeting (Planck to Lorentz, Oct. 7, 1908; SCHAL, Vol. 1, Doc. 176)—Planck did
not conceal his satisfaction with Bucherer’s ‘confirmation’ of the Einstein-Lorentz
theory (Planck to Lorentz, Nov. 21, 1908; SCHAL, Vol. 1, Doc. 178). Experiments on
fast-moving electrons at the Berlin Institute of Physics®® further reinforced Planck’s
conviction of “victory of the deformable electron”: “Then it seems that the theory of
relativity will need to be fully realized” (Planck to Lorentz, Nov. 21, 1908; SCHAL,
Vol. 1, Doc. 178).

Around that time, Adriaan D. Fokker, a student of Lorentz’s, found himself in Berlin
for family matters. Fokker carried a letter of invitation from Lorentz and managed
to successfully convince Planck to give a lecture at Leiden®” Planck’s seminal lecture
was held on December 9, 1908 in front of the Leiden student association. Planck
seized the opportunity to make his first public statement regarding the philosophical
underpinnings of his project on a general dynamics. “I did not take the lecture lightly”,
Planck wrote to Lorentz a few days later. While he was accustomed to speaking in
front of students, he remarked, it was quite challenging when there was a physicist
of Lorentz’s stature among the audience. However, Planck was happy with Lorentz’s
approval (Planck to Lorentz, Dec. 13, 1908; SCHAL, Vol. 2, Doc. 179) and consistently
cherished the memories of his time in Leiden (see Planck 1929).

The lecture was published a year later in the Physikalische Zeitschrift and as
separatum (Planck 1909). Planck’s stance on the principle of action and reaction
reveals itself as a particular manifestation of his broader philosophical outlook on the
challenge of unification in physics. Initially, Planck famously notes, physics had at
least as many main branches as human beings have senses: mechanics corresponded
to the sense of touch, optics to sight, acoustics to hearing, and thermodynamics to
the perception of heat. However, this classification underwent a gradual reshuffle.
Acoustics became fully integrated with mechanics, while magnetism and optics merged
into electrodynamics. These unifications were accompanied by a noticeable detachment
from the anthropomorphic aspects in all physical definitions (Planck 1909, 5-8). By
the time Planck was delivering his lecture, there were ultimately two broad branches of

56pProbably Planck is referring to experiments conducted by Erich Hupka under Heinrich Rubens’s
guidance.

STInterview of Adriaan Fokker by John L. Heilbron on 1963 April 1, Niels Bohr Library & Archives,
American Institute of Physics, College Park, MD USA, [www.aip.org/history-programs/niels-bohr{
[library /oral-histories /4607
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physics remaining: “mechanics and electrodynamics, or, as they may also be called,
physics of matter and physics of the ether” (Planck 1909, 8). However, Planck continues,
this division is clearly provisional, as demonstrated by several processes that cannot be
precisely classified as belonging to either mechanics or electrodynamics (Planck 1909,
8f.).

Ultimately, Planck sensed that “the original distinction between ether and matter
is gradually fading” (Planck 1909, 9). The question was simply to decide which of
the two branches of physics would ultimately survive and absorb the other (see also
Witte 1909b). However, Planck was skeptical of the feasibility of both the ‘mechanical
worldview” and the ‘electromagnetic worldview. Planck envisaged a different kind
of unification of the ‘physical worldview,” a unification in which both mechanics and
electrodynamics appear as special cases of a more encompassing framework: “A slightly
more generalized view of mechanics might thus allow it to include electrodynamics,
and, in fact, there are many indications that these two divisions, which are already
encroaching upon one another, will be joined into one single general scheme of dynamics”
(Planck 1909, 8; my emphasis).

In other terms, Planck did not seek a material unification, which would involve
reducing all phenomena to the same type of interaction, whether it be electrodynamic
or mechanical. Planck also rejected the so-called ‘energetics’ as an attempt to find in
energy a common ‘substance’ of which both kinds of phenomena are made®®. On the
contrary, Planck aimed at a formal unification, where all the dynamical laws governing
all interactions could be derived from a common principle (see also Witte 1909a).
As we have mentioned, Planck’s stance was built on Helmholtz’s recognition that all
dynamical laws governing mechanical and electromagnetic processes shared a common
feature: they could all be derived from the principle of least action. It is true that
the principle of energy conservation also applies to all of these processes. However,
it does not unambiguously determine the laws that govern them. The principle of
least action is much more powerful. It allows determining both mechano-dynamic
and electro-dynamic equations uniquely and entails the principle of conservation of
energy as a special case, as the value of energy can be determined from the kinetic
potential. As Helmholtz already recognized, the principle of least action proves to be
insufficient in the domain of irreversible processes (Planck 1909, 18). Planck credited
Boltzmann for having bridged the chasm between irreversible and reversible processes
by establishing the relationship between entropy and disorder (Planck 1909, 22-29).
The pursuit of general dynamics was back on track, as all elementary processes in
nature could be considered as ultimately reversible.

3.8 Planck’s General Dynamics. The Mathematical Structure

Planck entered into some technical details of the project of a general dynamics in a series
of lectures delivered the following year at Columbia University’s physics department in
New York City. The lectures were prepared in the winter of 1908-1909, just after the
Leiden talk, and were intended to serve as its technical counterpart (Planck 1910a).
They were delivered on four consecutive weekends in the spring of 1909, with a general
lecture on Friday and a more detailed and mathematical lecture on Saturday (Needell
1980, 120). The problem of irreversibility dominated the first six lectures. In the final
two lectures, held in May, Planck laid out his program of relativistic general dynamics,

58Gee Planck [1896.
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introducing the principle of least action and the principle of relativity. Indeed, in a
postcard to Laue from Washington, where he had traveled to attend the annual meeting
of the American Physical Society, Planck claimed that his ultimate goal was “making
propaganda for the relativity principle” (Planck to Laue, Apr. 28, 1909; Deutsches
Museum Bibliothek).

Once irreversibility is reduced to the concept of ‘disorder,” general dynamics appeared
to be capable of covering all fundamental natural processes. Whether these processes
are mechanical, electromagnetic, or thermal in nature, the laws that govern them can all
be derived from one principle—the principle of least action (Planck 1910a, 5). As Planck
pointed out, providing a short historical sketch, Hamilton’s principle of least action
emerged within the domain of mechanics, attaining equal status alongside numerous
other principles: the principle of d’Alembert, the principle of virtual displacement,
Gauss’s principle of least constraint, etc. (Planck 1910a, 97). All these principles
ultimately represent equivalent formulations of the same laws of mechanics, and the
choice of which to use depends on the specific problem at hand. However, according
to Planck, Helmholtz had shown that Hamilton’s “principle of least action has the
decided advantage over all the other principles mentioned” (Planck 1910a, 97). The
former were a mere byproduct of mechanics, that is, they hold as long as the laws of
mechanics are valid; Hamilton’s principle, on the contrary, is grounded at a deeper level
than the equations of mechanics, which appears to be only one of its instantiations,
alongside those of electrodynamics and the thermodynamics of reversible processes.

As we have seen, Planck credited Helmholtz (1886) for providing a general formu-
lation of the principle of least action. Consider a given physical system, subject to
specified external forces, that passes from its initial configuration at time ; to a final
configuration at time t5. Out of all possible paths that the system might take, the one
that is actually realized in nature is characterized by the condition:

/tl (6H + 5A)dt =0, (3.5)

to
where 0 H denotes the variation in kinetic potential H at any point in time, correspond-
ing to a slightly shifted path through which the system could move from the same
initial to the same final state within the same time span. H is a function of a number
of independent parameters, the generalized coordinates 1, o, @3 ... and their rate of
change with time, the generalized velocities @1, o, P3, . ..

H = f(p1,02,03...01, P2, P3) -

As we have seen, in classical point dynamics H corresponds to the ‘Lagrangian’ of the
system, the difference between potential energy, as a function of the positions of mass
points ;, and kinetic energy as a quadratic homogeneous function of their velocities,
o= Ccll—‘f. However, in the general case ¢; need not refer to positions of mass points and
b1, P2, Y3, - .. to their velocities of particles, but may refer to macroscopic parameters.
Moreover, in some cases, the separation of the two forms of energy might be no longer
recognizable. The kinetic potential entering the modified principle of least action does
not need to have its original form, in which the kinetic energy is a quadratic form in
the velocities and the potential energy does not contain the velocities; in Helmholtz’s
liberalized version of the kinetic potential, for example, the kinetic energy may depend

on ‘gyroscopic terms’ linear in velocity (see Helmholtz 1898, §77).
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In Helmholtz-Planck’s formulation, moreover, the ‘action’ includes besides d H an
external term dA, the total virtual work

0A = @15@1 + (1)25@2 + @25(,02 ce

done by @, ®,, ..., the so-called generalized external forces which act in such a way as
to increase the values of the corresponding generalized coordinates. In this generalized
form, the principle applies to nonconservative systems acted upon by friction, electrical
resistance, and other nonmechanical forces that are not derivable from a potential
function (Planck 1910a, 5).

The mathematical expression of the kinetic potential H depends on the characteris-
tics of the system under scrutiny. Uncovering the specific form of H in various classes
of phenomena—might be of mechanical, electrical, and thermodynamic nature—is
a fundamental task of general dynamics (Planck 1910a, 98). Once one has found
experimentally or by educated guess what the form of H is for any particular class
of physical systems, the calculus of variations yields Lagrange’s equations that in
Helmholtz-Planck form are:

@1_d<8H>+8H_O’

dt \og1) ~ 0p1
d (0H\ 0H (3.6)
@ P — — —
2 dt <0@2> 0@2 07
ete. ...

where the external terms @, @5, etc. express the generalized forces acting on the system
in such a sense as to tend to increase the values of the corresponding generalized coordi-
nates (Planck 1910a, 99). The dynamical laws governing mechanical, thermodynamic,
and electrodynamic systems can be derived as solutions to the equation eq. (3.6). In
this sense, Planck considered his general dynamics as a ‘unification’ of these different
branches of physics.

To understand the kind of unification Planck had in mind, one might take a closer
look at an example he provides. Planck considers a class of theories in which the
generalized coordinates form a continuous manifold, as in elasticity theory and electro-
dynamics (Planck 1910a, 105-109). In both cases, one might take the vector v,,v,, v, as
generalized coordinates. The difference between elasticity theory and electrodynamics
lies in the different dependence of the potential energy on the generalized coordinates
v: in elasticity theory, the potential energy depends on the spatial derivative of dis-
placement (the strain or deformation quantities), in electrodynamics it depends on the
squared curl of the vector potential (squared magnetic field). However, in both cases,
the field equations can be derived from the principle of least action. In particular, in
the case of electrodynamics one can derive Maxwell’s equations. In this sense, elasticity
theory and electrodynamics are structurally similar. However, according to Planck, this
structural analogy does not amount to a mechanical interpretation of electrodynamics:

Are, then, the electromagnetic processes thus referred back to mechanical processes? By
no means; for the vector v employed here is certainly not a mechanical quantity. It is,
moreover, not possible in general to interpret v as a mechanical quantity, for instance,
v as a displacement, v as a velocity, and the curl of v as a rotation. In fact, e.g., in
an electrostatic field, v is constant. Therefore, v increases with time beyond all limits,
and the curl v no longer can signify a rotation. However, from these considerations the
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[im]possibility of a mechanical explanation of electrical phenomena is not proven. It does
appear, on the other hand, to be undoubtedly true that the significance of the principle
of least action may be essentially extended beyond ordinary mechanics and that this
principle can therefore also be utilized as the foundation for general dynamics, since it
governs all known reversible processes. (Planck 1910a, 1909)

This passage illustrates Planck’s departure from the conventional approach of his
contemporaries in understanding the interconnections among different branches of
physics. Most of his peers pursued ‘horizontal’ unification, attempting to reduce
one class of interactions to another, e.g., electrodynamics to mechanics. On the
contrary, Planck embraced ‘vertical” unification, seeking unity through an overarching
principle that governs all classes of interactions (see Liu 1997). Elasticity and vacuum
electrodynamics are unified in the sense that the equations of both fields can be
derived from the principle of least action. One can wonder whether this structural
analogy deserves to be called a wunification. Indeed, no attempt is made to derive
both sets of equations from the same kinetic potential as in Helmholtz’s treatment of
thermodynamics, and even less to establish a coupling between two sets of variables as
in Planck’s relativistic thermodynamics.

Planck does not seem to have addressed this issue or possibly envisioned that
relativity would have allowed for a stronger kind of unification. Indeed, after having
sketched the mathematical framework of Helmholtz’s general dynamics in the 7th
lecture, in the last, 8th lecture held on May 15, 1909, Planck outlines its relativistic
completion. The lecture, albeit short, marks the convergence point for the entire lecture
series at Columbia—and, ultimately, of Planck’s work on relativity. The last step of
general dynamics, Planck pointed out, was to determine the dependence of H on the
velocity based on the principle of relativity (Planck 1910a, 110). Since every field of
physics is dominated by the principle of least action, Planck concludes that the meaning
of the principle of relativity emerges from the specific form it prescribes to the kinetic
potential H (Planck 1910a, 123). The latter prescription can be ultimately summarized
by the demand that for every space element of a physical system H dt = H'dt', in
all coordinate systems related by the Lorentz transformations. This implies that the
kinetic potential must satisfy the following relationship:

H H'

N o N2
The additive constant that Planck removes by laborious calculations in his 1907
article (see above, section 2.4) is now set equal to zero as a postulate. The theory of
relativity requires the validity of eq. (3.7) to ensure the invariance of the corresponding
action. The task of relativistic general dynamics is to (I) determine the expression
for the ‘classic’ kinetic potential H in a particular domain for the case of rest or
low velocities; (II) make alterations when necessary, determining the ‘relativistic’
expression of H that (Ila) satisfies eq. (3.7) and (IIb) reduces to the classical case
in low-speed approximation. Planck briefly summarizes the results of his previous
relativistic investigations, applying this reasoning to the case of point dynamics, vacuum
electrodynamics, and thermodynamics; finally, he briefly introduces the case of cavity
radiation (Planck 1910a, 124-126). However, in all these instances, the equations
of motion are now obtained by imposing the condition eq. (3.7) from the outset. In
this manner, the results Planck had previously obtained in isolation clearly emerge as
integral components of his project of a relativistic general dynamics.
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Planck met Einstein for the first time in person a few months later, in September
1909, at the meeting of the Gesellschaft Deutscher Naturforscher und Aerzte in Salzburg,
where they discussed the latter’s rather bold stance on the nature of radiation (Einstein
1909). However, it was in the keynote lecture at the following meeting of the Society
in Kénigsberg on September of 1910 that Planck had the opportunity to celebrate the
revolutionary nature of the relativity principle (Planck 1910b). The relativity principle,
he insisted, did undercut the program of the mechanical worldview; however, it did
not imply a postponement in the realization of the unified world picture. As far as |
can see, for the first time, Planck alludes to the four-dimensional formulation of the

principle of least action, [ Hdr, where 7 = t,/1 — Z—i is the so-called ‘proper time. He
labeled it the crowning of the entire system of physics, unifying the conservation laws
of momentum and energy, and of matter and energy (Planck 1910b, 27-28).

Thereby, Planck believed that he had established the general dynamics as a powerful
research program, a formal method to find theories by searching for the appropriate
Lorentz-invariant form of H. Also, in his last contribution to relativity, for example,
Planck (1910c) reveals Planck’s commitment to this project. In a short note commenting
on the so-called Ehrenfest (1909) paradox, Planck drew the conclusion that in relativity
theory, there are only deformable bodies. The task of determining the deformation
of a body accelerated in any way is, therefore, essentially an ‘elastic problem’ in both
relativity theory and ordinary mechanics (Planck 1910b, 294). The problem can be
solved “once the kinetic potential of the elastic deformations is known”, under the
condition that the kinetic potential for the unit volume of a material at a given point
is Lorentz invariant (Planck 1910b, 294; my emphasis). The problem was addressed by
Gustav Herglotz (1911) in the subsequent months.

The doctoral theses supervised by Planck during those years, as well as postdoc-
toral works written under his influence, exemplify his enduring interest and active
endorsement of this program. Some students, such as Wilhelm Heil (1909) and Erich
Hupka (1909), revisited the issue of the reliability of Kaufmann-like experiments on
fast-moving electrons (Hupka 1910; Heil 1910b, 1910a, 1911). Others were entrusted by
Planck with actively developing and extending the general dynamics program to various
branches of physics. Ferencz Jittner (1911b, 1911a) formulated a relativistic kinetic
theory of gases, Ernst Lamla (1912a, 1912b) delved into relativistic hydrodynamics,
and Erich Henschke (1912) explored the electrodynamics of moving media. In all of
these cases, the same methodological procedure was adopted. The classical kinetic
potential of a certain class of systems valid for low velocities is established and then
modified to comply with principle of relativity. The new relativistic equations are
derived via the principle of least action as a solution of Lagrange’s equations. Although
the relativistic implications of these new theories could not be empirically tested, their
very existence served to demonstrate the possibility of developing general dynamics
without encountering contradictions. Planck was confident that the meaning of the
‘quantum of action” would nicely fit into this program (Planck 1914, 108).

4 Conclusion. The Triumph of The Great Principle of Physics

By the turn of the 1910s, while Planck’s scientific productivity slowed down, he assumed
an increasingly prominent institutional role within the German physics community. In
addition to his various responsibilities within the German Physical Society, Planck was
elected as one of the four standing secretaries of the Berlin Academy’s Mathematical-
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Physical Class in June 1912. It was in this role that Planck played a crucial role in
bringing Einstein to Berlin. In 1913, the last year before the war, Planck also took on the
position of rector at the University of Berlin. He officially assumed his duties on October
15, 1913 and delivered an inaugural lecture on the new paths that physics had taken in
the previous decade (Planck 1913). For the layperson, the recent history of physics
might appear as a causal succession of unrealistic hopes and bitter disappointments.
However, upon closer inspection, “the grand general principles of physics”—the principle
of conservation of energy, the principle of conservation of momentum, the principle
of least action, and the second principle of thermodynamics—had always held their
ground. According to Planck, the latest developments in theoretical physics could be
ultimately described as “the triumph of the great principles of physics” (Planck 1913,
30; my emphasis). By the end of the nineteenth century, two principles emerged as
victorious: the principle of least action for reversible processes and the second principle
of thermodynamics, which dominated irreversible processes.

In his famous 1914 address, at the Founder Day of the University of Berlin, Planck
(1914) fully embraced Boltzmann’s explanation of irreversibility, accepting that entire
domains of physics were dominated by purely statistical laws. However, Planck remained
firmly convinced that physics could not evade postulating absolute dynamical laws for
elementary reversible processes. The fact that all these laws can be derived from the
principle of least action solidified the status of this principle as the supreme principle
in physics. Planck returned to this issue in two contributions written for Kultur der
Gegenwart, an ambitious encyclopedia project in more than 50 volumes directed by
historian Paul Hinneberg (Stéltzner 2008). Planck contributed two articles to the last,
more programmatic, chapter of the volume: Das Prinzip der kleinsten Wirkung (Planck
1915a) and Das Verhdltnis der Theorien zueinander (Planck 1915b). Even though
both papers were intended as encyclopedia entries, Planck utilized the opportunity
to expand upon the key points of his programmatic Leyden lecture, providing a more
detailed historical and philosophical framework for his overarching project to bring
mechano-dynamics, thermo-dynamcs and electro-dynamics “under the banner of the
principle of relativity into a unified theory, which I shall call ‘dynamics’” (Planck 1915b,
735).

Ultimately, Planck’s three-dimensional generalized ‘dynamics,” based on the principle
of least action and the principle of relativity, did not gain the widespread support he
had hoped for. I guess that Planck’s project was superseded by his student Laue’s four-
dimensional ‘relativistic continuum dynamics’ (see Darrigol 2022, 225-229), which relied
on the principle of relativity, the principle of conservation of energy and momentum
(Laue 1911c, 1911a). However, the demise of Planck’s general dynamics was at the same
time a confirmation of its methodological insight. Expounding Minkowski-Sommerfeld
four-dimensional vector calculus, Laue substituted Newton’s definition of force as mass
times acceleration F = ma, with the relativistic definition of the four-force density F
as the four-divergence of the ‘world tensor’ T, that is, in Laue’s notation:

F=—AivT. (4.1)

In the presence of the force-density F = F}, a ‘system’ undergoes a divergence in the
16-component world tensor ‘worldtensor’ T = T}y; that is, it behaves like a ‘source’ or
a ‘sink’ of the flow of energy and momentum at a space-time point. Thereby, the two
aspects of ‘force’ as ‘the time rate of change of momentum’ and as ‘the space rate of
change on energy’ are unified as the space and time components of the four-vector F.
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The two local conservation laws of energy and momentum are encapsulated into the
simple differential expression — Aiv T = 0 that, when integrated over an appropriate
volume, leads to the conservation laws in integral form (Laue 1911a, §15).

Within this formalism, all results that Planck obtained somewhat laboriously fall
into place in one fell swoop. The nine spatial components T}, T}, ... correspond
to the components of Planck’s tensor-triple eq. (3.4), representing the component
stresses/momentum flux p = p,,. The temporal component of Tj; corresponds to the
energy density w, the three components 7, to the momentum density g, and the three
components T to the energy flux S. The symmetry T}, = T; elegantly encapsulates
Planck’s ‘hypothesis’ of the inertia of energy eq. (3.3), since it implies that T;; = T,
(Laue 1911a, 149). Laue (1911a, 168-170) further shows that, for a complete static
system at rest, all stress components vanish [ pdV = 0, and the remaining components
form a four-vector E,G,,G,, G, of invariant length m (in natural units with ¢ = 1).
Thus, any extended system in static equilibrium (whether it is an electron or cavity
radiation) behaves like a structureless point particle, as Planck surmised eq. (2.25). In
the zero-momentum frame (Ey, 0,0, 0), and therefore Ey = m (or mc? in c.g.s. units).
This is typically considered as a demonstration of the equivalence of mass and energy
eq. (2.24), which Planck could outline for the special case in which stresses reduce to
scalar pressure (Laue 1911c, 534; 1911a, 155f.).

Laue admits that eq. (4.1) was first introduced by Minkowski (1908) in electrody-
namics; however, this was a historical accident due to the higher precision of optical
and electrodynamic experiments. In principle, eq. (4.1) could have originated from
any branch of physics. In fact, the universal validity of eq. (4.1) has nothing to do
with the reduction of all physics to electrodynamics. It lies at a deeper level than
both mechanics and electrodynamics: “Overall, the unification of the two still separate
areas of theoretical physics—electrodynamics and mechanics—does not seem to be
achievable through the subordination of one to the other, but rather through the equal
subordination of both under higher laws” (Laue 1911b, 186, first emphasis mine). There
is little doubt that, in this passage, Laue had his mentor’s conception of unification in
mind. His new relativistic dynamics stands over all branches of physics. Equation (4.1)
applies to electromagnetic, mechanical, thermal systems or a combination thereof,
provided the proper interpretation of the components of the Welttensor T for the
system under consideration has been provided.

Planck and Laue appreciated that the relativistic revolution was possible by ex-
ploiting the existence of different levels of physical theories (Flores 1998). A physical
theory entails (a) a general theory of motion, or, in Planck’s terminology, a general
dynamics, a framework based on a set of principles that provide mathematical criteria
to establish what counts as an allowable dynamical law, and (b) the actual dynamical
laws describing a particular kind of interaction (Flores 1998; Lange 2016). In broad
Kuhnian terms, one might venture to say that ‘normal science’ proceeds by searching
for dynamical laws within a particular framework, aiming to reduce approximations to
more fundamental interactions, possibly converging to one single type of interaction.
On the contrary, ‘revolutionary science’ often addresses the principles that govern the
framework itself, trying to establish a new scheme for treating physical theories.

However, these ‘frameworks’ only partially resemble Kuhnian ‘paradigms.’ By
using Planck’s work as a blueprint, one can try to point out some of their general
features through contrast. (a) Frameworks are not simply disciplinary matrices; they
consist of mathematically formulated principles that impose specific constraints that
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circumscribe the range of allowable lower-level laws. As we have seen, Planck relied
on the principle of relativity and the principle of least action. (b) The transition to a
new framework is not an irrational jump. It is obtained by modifying an existing more
abstract formulation of the old framework. Planck upgraded the Lagrange-Helmholtz
formulation of classical mechanics and thermodynamics by making it Lorentz invariant.
(c) Subsequent frameworks are not incommensurable. The transition to a new framework
is achieved by introducing a new principle, like the relativity principle; however it
presupposes principles that maintain transparadigmatic validity, such as the principle
of least action. Ultimately, the success of a new framework is measured by the capacity
of its principles to update the approximate laws of the old framework into laws that
are exactly valid. Without the input of the old laws, the framework itself seems to be
powerless.

Planck’s general dynamics failed as a unification program. However, it might be
interesting to study it as a kind of heuristic routine: Put the classical equations in
Lagrangian form; ‘relativize’ them by searching for the Lorentz-invariant form of the
kinetic potential; find the new dynamical laws as solutions to Lagrange’s equations;
if possible, compare the new dynamical laws with experience. I suggest that this
routine encapsulates the core of the ‘practice of principles” Extrapolating general
methodological rules from the history of physics is always an unpromising endeavor,
as we ultimately possess too few data points. However, it is legitimate to point out
an interesting pattern. Even the other great theory of 20th-century physics, quantum
mechanics, seems to replicate a similar methodological routine. As Dirac (1925) has
shown, quantum mechanics can be seen as an ‘upgrade’ of the classical Hamiltonian
formulation through a modification of the algebra of Poisson brackets. A new general
dynamics is established, a new recipe for generating laws: take a classical law, put it in
Hamiltonian form, replace Poisson brackets with commutators, and test whether the
new laws thus obtained are empirically adequate.

A Appendix: Planck’s ‘Elementary Calculation’

To understand Planck’s derivation of eqs. (1.7) and egs. (1.8), it is convenient to start
with Planck’s result, namely the definition of force as the time derivative of relativistic
momentum, eq. (1.14). Consider the case of a force F that increases the velocity
T =wv,y = 0,2 =0 of a particle along the x axis. One can split the force into two
components and carry on the differentiation. Working with the z-component, one
obtains the following:

2 d mz d:'v d 1
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Since the component of the force acting in the direction of the velocity changes the

magnitude of the relativistic momentum, one has to take into account the time derivative
of the Lorentz factor by applying the chain rule:
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The product of mass, acceleration and velocity m(q - a) = m(i& + gy + 22) is the
‘power’ delivered by the force F-q. In the case F = ¢E, and by rearranging, one obtains
the x-component of egs. (1.7):
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